

Asia-Pacific Economic Cooperation

The Concept of the Low-Carbon Town in the APEC Region

Fourth Edition

November 2014

The APEC Low Carbon Model Town Task Force

APEC Energy Working Group

EWG 20/2012A Prepared by Asia Pacific Energy Research Centre Inui Building, Kachidoki, 1-13-1, Kachidoki, Chuo-ku, Tokyo, 104-0054, Japan Phone: (81) 3-5144-8551 E-mail: master@aperc.ieej.or Website: http://aperc.ieej.or.jp

Prepared for Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace, Singapore 119616 Phone: (65) 6891-9600 E-mail: info@apec.org Website: http://www.apec.org © 2014 APEC Secretariat

The Concept of the Low Carbon Town in the APEC Region

Part I

Fourth Edition

CONTENTS

Acknowledgement	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• \	/
Executive Summar	y •				-		•	•	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	vi	i

Part 1

Chapter 1 Background

1.1 Urbanization and the impact in the APEC region • • • • • •	•	• •	••	•	•	•	•••	•	•	•	• •	•	• •	•	•	•	• 1
$1.2~{\rm Low}~{\rm carbon}~{\rm target}~{\rm for}~{\rm each}~{\rm APEC}~{\rm member}~{\rm economy}$.	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	• 3
1.3 Trend of CO2 emissions in cities • • • • • • • • • •	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	• 3

Chapter 2 The Concept of the Low Carbon Town

2.1 What is the Concept of the APEC LCT ? • • • • • • • • •	•	•••	•	•••	•	•	•	•	•	•	•	• 5
2.2 What is the APEC LCT · · · · · · · · · · · · · · · · · · ·	•	•••	•	•••	•	•	•	•	•	•	•	• 6
2.3 The Criteria for the APEC Low Carbon Model Town Project	•	••	•	•••	•	•	•	•	•	•	•	• 7

Chapter 3 Basic Approach to Develop a Low-Carbon Town

3.1 Overall Planning to develop the Low carbon Town • • • • • • • • • • • • • • • • • • •
3.2 Strategy to Develop the Low Carbon Town • • • • • • • • • • • • • • • • • • •
1) Collecting data on energy use and CO2 emissions • • • • • • • • • • • • • • • • • 10
2) Setting quantitative low carbon targets • • • • • • • • • • • • • • • • • • •
3) Listing low carbon measures ••••••••••••••••••••••••••••••••••••
4) Evaluating the effects of low carbon measures screened through the previous
step $\cdots \cdots \cdots$
5) Selecting the most appropriate set of cost effective low carbon measures · · · · · 13
Chapter 4 Characterization of Towns and Low carbon Measures • • • • • • • • • • • • • • 15
Chapter 5 Summary of Part 1 • • • • • • • • • • • • • • • • • •

The Concept of the Low Carbon Town in the APEC Region

Part II

Fourth Edition

CONTENTS

Chapter 1 Basic Approach to Developing a Low Carbon Town
1.1 Overall planning for development of a low carbon town • • • • • • • • • • • • • • • • • • •
1.2 Setting quantitative low carbon targets • • • • • • • • • • • • • • • • • • •
Chapter 2 Measures to Use in the Development of a Low Carbon Town • • • • • • • • • • • • • • • • • • •
2.1 Measures on the energy demand side • • • • • • • • • • • • • • • • • • •
2.1.1 Low carbon urban structure and Land Use • • • • • • • • • • • • • • • • • • •
1) Low carbon urban structure (TOD Type Land use) ••••••••••••••••••••••••••••••••••••
2) Low carbon land use · · · · · · · · · · · · · · · · · · ·
2.1.2 Low carbon building • • • • • • • • • • • • • • • • • • •
i) Reduction of heat load in the building • • • • • • • • • • • • • • • • • • •
ii) Adoption of passive energy design • • • • • • • • • • • • • • • • • • •
iii) Improvement of equipment efficiency • • • • • • • • • • • • • • • • • • •
2.1.3 Energy management system • • • • • • • • • • • • • • • • • • •
i) Building-level energy management systems • • • • • • • • • • • • • • • • • • •
ii) Regional or district-level energy management system • • • • • • • • • • • • • • • • 32
2.1.4 Low carbon transport $\cdot \cdot \cdot$
i) Low carbon measures in the transportation sector (Revised) \cdot · · · · · · · · · · · · · · · · · · ·
ii) Upgrading of public transit systems • • • • • • • • • • • • • • • • • • •
iii) Introduction of next-generation vehicles and facilities • • • • • • • • • • • • • • • • • • •
iv) Traffic demand management • • • • • • • • • • • • • • • • • • •
2.2. Measures on the energy supply side $\cdots \cdots \cdots$
2.2.1 Area Energy Network • • • • • • • • • • • • • • • • • • •
2.2.2. Use of untapped energy · · · · · · · · · · · · · · · · · · ·
i) Untapped energy sources · · · · · · · · · · · · · · · · · · ·
ii) Utilizing untapped energy in towns • • • • • • • • • • • • • • • • • • •
iii) Managing urban development to promote untapped energy use
•••••••••••••••••••••••••••••
iv) Linking with improvements to urban thermal environment \cdot · · · · · · · · · · · 40
2.2.3 Use of renewable energy $\cdot \cdot \cdot$
i) Renewable energy sources $\cdots \cdots \cdots$
ii) Using renewable energy in towns • • • • • • • • • • • • • • • • • • •
iii) Managing town development to promote renewable energy use • • • • • • • • • • • • • • • • • • •

iv) Linking biomass sources to town development • • • • • • • • • • • • • • • • • • •
2.3 Measures that straddle energy demand and supply • • • • • • • • • • • • • • • • • • •
2.3.1 Smart grid systems · · · · · · · · · · · · · · · · · · ·
2.3.2 Smart energy system • • • • • • • • • • • • • • • • • • •
2.3.3 Water treatment \cdot · · · · · · · · · · · · · · · · · · ·
2.3.4 Solid waste management · · · · · · · · · · · · · · · · · · ·
2.4. Greenery • • • • • • • • • • • • • • • • • • •
2.4.1 The effect of greenery $\cdot \cdot \cdot$
2.4.2 Greenery as the measures for carbon absorption • • • • • • • • • • • • • • • • • • •

Chapter 3 Evaluating the Effect of Low Carbon Measures

3.1 Purpose of evaluating the CO2 reducing effects • • • • • • • • • • • • • • • • • 55
3.2 Basic methodology to evaluate CO2 reducing effects • • • • • • • • • • • • • • • • • 56
3.2.1 Demand side • • • • • • • • • • • • • • • • • • •
i) Low carbon town structures (Transit Oriented Development (TOD) type land use) · · · 56
ii) Low carbon buildings • • • • • • • • • • • • • • • • • • •
iii) Low carbon transportation • • • • • • • • • • • • • • • • • • •
a) Traffic volume • • • • • • • • • • • • • • • • • • •
b) Distance traveled • • • • • • • • • • • • • • • • • • •
c) Emission intensity · · · · · · · · · · · · · · · · · · ·
3.2.2 Supply side • • • • • • • • • • • • • • • • • • •
3.2.3 Demand and Supply Side · · · · · · · · · · · · · · · · · · ·
Chapter 4 Summary of Part 2 · · · · · · · · · · · · · · · · · ·

The Concept of the Low Carbon Town in the APEC Region

Appendices and Index

Fourth Edition

CONTENTS

Appendices

Appendix 1	Low Carbon Target for APEC Economies	66
Appendix 2	Low Carbon Measures and their Applicability	69
Appendix 3	Low Carbon Measure with Case Examples	72
Appendix 4	Low Carbon Town Indicators (Preliminary Study Results)	124

INDEX

Part I	152
Part II	153

Acknowledgement

Originally, this report was compiled based on a preparatory study by the Task Force (TF) Japan, the team of Japanese low carbon town experts, under the guidance of Project Overseer of APEC Low Carbon Model Town (LCMT) Project, International Affairs Division, Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI), Japan.

We would like to thank members of TF Japan; Dr. Shinji Yamamura, Dr. Ken Kodama, Mr. Tadashi Takimoto, Mr. Michinaga Kohno, Mr.Yasue Furuta and Mr. Junichi Ogasawara.

We would also thank members of Study Group A for LCMT Phase I, who provided invaluable comments to the draft report as well as participating in the site visits for the Concept development which were conducted in the cities where low carbon town development is being planned; Mr. Meng Xu (China), Ir. Eko Budi Santoso (Indonesia), Ms. Punitha Silivarajoo (Malaysia), Ms. Lilian Fernandez (Philippine), Ms. Hershey T. dela Cruz (Philippine), Ms. Caroline Quitaleg (Philippine), Dr. Twarath Sutabutr (Thailand), Dr. Sorawit Nunt-Jaruwong (Thailand), Mr. Do Thanh Vinh (Viet Nam) and Dr. Yie-Zu Robert HU (Chinese Taipei).

Special thanks go to members of LCMT Task Force for their thoughtful advice, especially Dr. Ken Church (Canada), who provided invaluable input to the draft report.

This report benefited from the insight described in the report titled "Low Carbon City Development Guidance" prepared by Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan.

In 2012, as a LCMT Phase II, TF Japan refined the concept mainly focused on "resort area". We would like to thank members of TF Japan; Dr. Shinji Yamamura, Dr. Ken Kodama, Mr. Tadashi Takimoto, Mr. Michinaga Kohno, Mr. Junichi Ogasawara, Mr. Masafumi Usuda, Mr. Shinnichi Sasayama, Mr.Toshiya Takahashi, Mr.Satoshi Nakanishi, and Mr.Yasue Furuta.

We would also thank members of Study Group A for LCMT Phase II, who provided invaluable comments to the draft report as well as participating in the site visits for the Concept development which were conducted in the cities where low carbon town development is being planned; Dr.Ir. Eko Budi Santoso (Indonesia), Ms. Punitha Silivarajoo (Malaysia), Dr. Sorawit Nunt-Jaruwong (Thailand), and Mr. Do Thanh Vinh (Viet Nam).

In 2013, as a LCMT Phase III, TF Japan refined the concept mainly focused on "redevelopment of existing area". We would like to thank members of TF Japan; Dr. Shinji Yamamura, Dr. Ken Kodama, Mr. Tadashi Takimoto, Mr. Michinaga Kohno, Mr. Masafumi Usuda, Mr. Shinnichi Sasayama, Mr.Satoshi Nakanishi, Mr.Yasue Furuta and Mr. Takaaki Masui.

We would also thank members of Study Group A for LCMT Phase III, who provided invaluable comments to the draft report as well as participating in the site visits for the Concept development which

were conducted in the cities where low carbon town development is being planned; Ms. Su Xing (China), Mr. Michinaga Kohno(Japan), Mr. Masato Takahashi (Japan) and Ms. Santivipa Phanichkul (Thailand).

In 2014, as a LCMT Phase IV, TF Japan refined the concept mainly focused on "residential area". We would like to thank members of TF Japan; Dr. Ken Kodama, Mr. Makoto Takahashi, Mr. Masafumi Usuda, Mr. Michinaga Kohno, Dr. Ryota Kuzuki, Mr.Satoshi Nakanishi, Dr. Shinji Yamamura, Mr. Tadashi Takimoto, Mr. Takaaki Masui and Mr.Yasue Furuta.

We would also thank members of Study Group A for LCMT Phase IV, who provide invaluable comments to the draft report as well as participating in the site visits for the Concept development which were conducted in the cities where low carbon town development is being planned; Mr. Michinaga Kohno (Japan), Dr. Ming-Shan Jeng (EGNRET), Dr. Santivipa Phanichkul (Thailand), Ms. Setsuko Saya (OECD), Ms. Su Xing (China) and Mr. Takahiro Ogawa (Japan).

,.

Executive Summary

At the 9th APEC Energy Ministers Meeting (EMM9), which was held in Fukui, Japan on 19 June 2010, focusing on the theme "Low Carbon Paths to Energy Security", the Ministers observed that "Introduction of low-carbon technologies in city planning to boost energy efficiency and reduce fossil energy use is vital to manage rapidly growing energy consumption in urban areas of APEC". Responding to this observation, they called for the APEC Energy Working Group (EWG) to implement an APEC Low-Carbon Model Town (LCMT) Project "to encourage creation of low-carbon communities in urban development plans, and share best practices for making such communities a reality".

The APEC LCMT project consists of three activities, namely, i) development of the "Concept of the Low-Carbon Town", ii) feasibility studies (hereafter "F/S") and iii) policy reviews of planned town and city development projects. The LCMT Project will be a multi-year project. In the first phase of the LCMT Project, an initial version of the "Concept of the Low Carbon Town" was developed and F/S and policy review for the Yujiapu CBD (Central Business District) Development Project in Tianjin, China was provided. In the second phase of the LCMT Project, the "Concept of the Low Carbon Town" was refined as a Second Edition, which mainly focused on "resort area", and F/S and policy review for the Samui Island in Thailand was provided as same procedure as previous phase. In the third phase of the LCMT Project, the "Concept of the Low Carbon Town" was refined as a Third Edition, which mainly focused on "redevelopment of the existing area", and F/S and policy review for Da Nang in Viet Nam was provided as same procedure as previous phase of the LCMT Project, the "Concept of the Low Carbon Town" was refined as a Same procedure as previous phases. In the fourth phase of the LCMT Project, the "Concept of the Low Carbon Town" was refined as a Same procedure as previous phases. In the fourth phase of the LCMT Project, the "Concept of the Low Carbon Town" was refined as a same procedure as previous phases. In the fourth phase of the LCMT Project, the "Concept of the Low Carbon Town" was refined as a Fourth Edition, which mainly focused on "residential area", and F/S and policy review for San Borja in Peru was provided as same procedure as previous phases.

To develop the "Concept of the Low-Carbon Town", Study Group A was formed, in which experts from interested APEC member economies participate as a task-shared activity. Over the next several years, the "Concept of the Low-Carbon Town" will be further refined into a useful guidebook for planners who wish to implement low-carbon town design, building on the case studies of other Low Carbon Towns in the APEC as well as incorporating the practical methodologies for town planning and design. In the similar way, Study Group B was formed to conduct policy review.

As the key advisory body for the APEC LCMT project, LCMT Task Force (TF) was established in response to the Energy Minister's instructions in their Fukui Declaration. LCMT TF is responsible for supporting development of the "Concept of the Low Carbon Town". The Asia-Pacific Energy Research Centre (APERC) coordinates the overall work of APEC LCMT project including the work of the Study Group A and B under the direction of the Agency for Natural Resources and Energy, METI Japan (Project Overseer).

The "Concept of the APEC Low Carbon Town (LCT)" aims to provide a basic idea of what is a low-carbon town and an effective approach on how to develop it. The LCT Concept aims to promote the development of low-carbon towns in the APEC region by providing a basic principle that can assist the central and local government officials of the member economies in planning effective low-carbon policies and in formulating an appropriate combination of low-carbon measures while taking socio-economic

conditions and city specific characteristics into consideration.

The APEC Low Carbon Town(LCT) means towns, cities and villages which seek to become low carbon with a quantitative CO_2 emissions reduction target and a concrete low carbon developing plan irrespective of its size, characteristics and type of development (greenfield or brownfield development). The overall planning to develop the LCT proceeds on a step by step basis. The first stage of the planning is to create a basic low carbon town development plan, which builds upon the existing town development plan and goals and backgrounds of the central and local government's low carbon plan.

The following stage is the formation of a low carbon town development strategy, two essential features of which are to 1) set quantitative low carbon reduction targets with a time frame to achieve them, and 2) select the most appropriate set of low carbon measures in a comprehensive manner. In this planning process, it is vital to completely grasp the characteristics of the town under consideration, because the characteristics of a town make a difference in selecting the most appropriate set of low carbon measures.

There are several different characteristics of towns including climate conditions, geography, industrial structure, town structure or intensity of land use and town infrastructure. Unlike the first two characteristics, industrial structure, town structure and town infrastructure are variable. Therefore, the government officials responsible for low carbon town development, especially in the developing economies where rapid growth of towns are being observed, should look at the future picture of the town, or even think about guiding these changes from a view point of reducing CO_2 emissions in the town.

The LCMT project offers a very good opportunity for central as well as local government officials in APEC economies to refine and enhance their current low carbon town development plans based on the "Concept of the APEC Low Carbon Town".

The first part of "The Concept of the Low Carbon Town (LCT) in the APEC Region" set out the basics of what low carbon towns are, as well as an effective way they can be developed, taking into account the characteristics of individual towns. This second part of the document outlines the overall planning process for low carbon towns, including how to set quantitative low carbon targets. It details a range of measures and /or technologies that can be employed to reduce carbon emissions on both the energy demand and supply side, effective selection processes to choose the best of these for individual situations, and methodologies to evaluate their actual effect.

"The Concept of the Low Carbon Town (LCT) in the APEC Region - Part II" is intended to be a guidebook for central and local government officials responsible for low carbon town policies, as well as municipality officials and city planners who are directly responsible for low carbon town development.

The planning of a low carbon town requires considerable public input. And if the project is to keep going, it is essential to gain buy-in from champions among all groups of people involved and affected (the stakeholders). These issues will be explored at the later stage, - this initial "Concept", focuses on the practical methodologies for low carbon town development planning and design.

The "Concept of the Low Carbon Town (LCT) in the APEC Region" stresses the importance of setting quantitative low carbon reduction targets with a time frame for achievement. Most of the towns in the developing economies in the APEC region, however, do not have such targets at present. In the meantime, they have been actively dealing with air and water pollution, waste management, and recycling of used water with numerical targets. It may not be an easy task for cities and towns to set quantitative low carbon reduction targets.

However, the efforts in this direction would help resolve many of the urban problems they already face. Moreover, working on and achieving low carbon development will make a town and city more attractive and livable. Note that the targets are designed town specific and are not broad- based ones that would apply across all APEC economies.


The Concept of the Low-Carbon Town in the APEC Region

Part I

Fourth Edition

November 2014

i

Chapter 1 Background

1.1 Urbanization and the impact in the APEC region

The APEC region has increasingly been urbanized in recent years. In 2010, the average urbanization rate in all APEC economies was 68.5%. Urbanization is likely to increase in the future. In 2050, the average urbanization rate is predicted to be around at 80.9%. Especially in Asia, the increase in urbanization has been remarkable and has a strong possibility of increasing as represented by economies such as China, Indonesia, the Philippines, Thailand and Viet Nam, etc. (Figure 1).

Australia 100 Brunei Darussalam Canada 90 Chile 80 China Hong Kong, China Proportion urban population (%) 70 Indonesia Japan 60 Korea Malaysia 50 Mexico 40 New Zealand Papua New Guinea 30 Peru The Philippines 20 The Russian Federation 10 Singapore Thailand 0 United States 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 Viet Nam Year

Figure 1 APEC Economies Urbanization Outlook

Source: World Urbanization Prospects 2009 (United Nations Development Program)

Energy consumption has also increased in responses to urbanization advances. The amount of primary energy consumption in the APEC region has increased at an annual average rate of 3.5% since 1990. In 2008, the consumption stood at approximately 6.8 billion toe (tons of oil equivalent), an 84.2% increase compared to year 1990 and a 26.2% increase compared to year 2000.

The increase in the energy consumption is remarkable especially in China where the consumption has more than doubled during the period from 2000 to 2008. China accounted for 76.9% of the total increase in energy consumption in the APEC region during the period (Figure 2). Energy consumption has also significantly increased in Indonesia, Chinese Taipei, Thailand and Malaysia (Figure 3). Energy consumption is expected to increase significantly as emerging economies especially in Asia achieve high economic growth

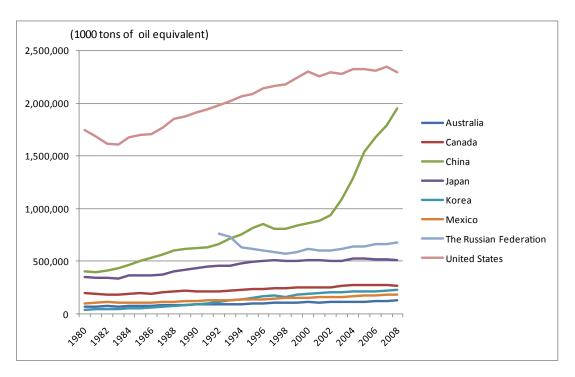
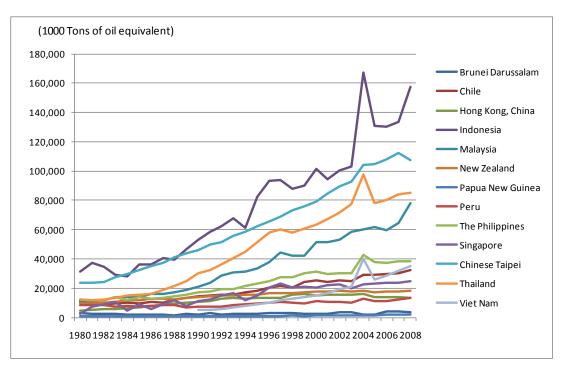



Figure 2 Historical Trend of Primary Energy Supply for APEC Economies-1

Source: APEC Energy Statistics, 2000, 2004 and 2008

Figure 3 Historical Trend of Primary Energy Supply for APEC Economies-2

Source: APEC Energy Statistics, 2000, 2004 and 2008

The urbanization has led to the increase in energy consumption in the APEC region. Naturally, much of the energy is consumed in the urban areas. Reducing green house gas emissions in the area is important challenge for the APEC economies. Therefore, making the concept of low carbon model towns to help the implementation of low carbon town in the APEC region is significant in this respect.

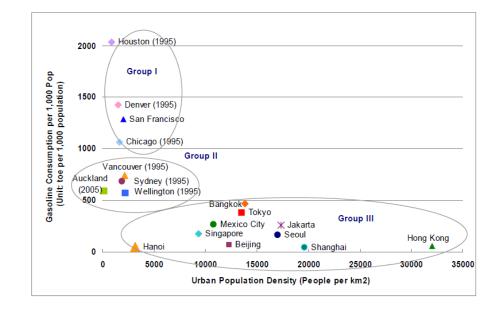
1.2 Low carbon target for each APEC member economy

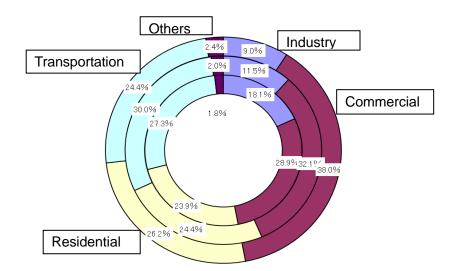
As discussed, the energy consumption in the APEC region, especially in Asia, has been increasing, resulting in increased greenhouse gas emissions. This has prompted APEC member economies to work on carbon reductions by developing their own low carbon targets (Appendix 1).

1.3 Trend of CO₂ emissions in cities

The increase in energy consumption and greenhouse gas emissions tends to be conspicuous in urban areas. Therefore, understanding the level of greenhouse gas emissions and absorptions in each city is important to define low carbon targets and enact methods to achieve set targets.

 CO_2 emissions resulting from urbanization show that per capita gasoline consumption in cities in developing economies is currently lower than that in North American cities (Figure 4). However increasing dependency on private transport with improving per capita income is expected to increase per capita CO_2 emissions in the future.




Figure 4 Urban Population Density and Gasoline Consumption per 1,000 Person

Source: Urban Transport Energy Use in The APEC Region

Changes in life styles resulting from economic growth will also change the energy demand and hence the percentages of CO_2 emission sources in cities. To put it differently, as the urbanization process

changes the living habits, CO_2 emissions in residential, commercial and transportation sectors increase. For example in Tokyo, the percentage of CO_2 emissions in industrial sector decreased from 18.1% to 9.0% during the period from 1990 to 2007. On the other hand, the percentage of CO_2 emissions in residential and commercial sector increased from 23.9% to 26.3%, from 28.9% to 38.1% respectively during the same period (Figure 5).

Figure 5 CO₂ Emissions in Tokyo

Inner circle: FY 1990 (Total 54.4 million ton-CO2) Middle circle: FY2000 (Total 58.8 million ton-CO2) Outer circle: FY2008 (Total 54.9 million ton -CO2)

Source: Tokyo Metropolitan Government

Chapter 3 describes the basic approach to develop Low-Carbon Town. When planning a low carbon town, it is important to study fully the current status and future changes in energy demand in cities as a low carbon town development spans long periods of time.

Urbanization could also lead to overpopulation, deteriorated sanitary conditions, traffic congestion, air and water pollution and decreased Quality of Life (QOL) for people. Efforts for reducing CO_2 emissions in cities where various life activities take place intensively and a large volume of energy is consumed could also help resolve such urban problems in cities. Working on and achieving low carbon towns are expected to create new values to them.

Chapter 2 The APEC Low Carbon Town (LCT) and Its Concept

2.1 What is the Concept of the APEC LCT?

The "Concept of the APEC LCT" aims to provide a basic idea of what is the APEC Low-Carbon Town and an effective approach on how to develop the APEC Low Carbon Town, considering the characteristics of the intended town. The target audience of this Concept is the central as well as local government officials responsible for low-carbon town policies and its development plans. The basic approach for low carbon town development, and characterization of towns and low carbon measures will be explained in detail in Chapter 3 and 4 respectively.

As is shown in Figure 6, there are many different types of measures to mitigate CO_2 emissions. They are divided into different types of measures, namely, 1) energy related measures which directly result in CO_2 emissions reductions such as introduction of energy efficient equipments/facilities, use of renewable energy, etc. (shown in the left-hand circle of the figure) and 2) other environment related measures which indirectly facilitate CO_2 emissions reductions such as public transport, recycling, forestation, etc. (shown in the right-hand circle of the figure). The "Concept of the APEC LCT" will be helpful for them to identify the appropriate set of low carbon measures for a town considered.

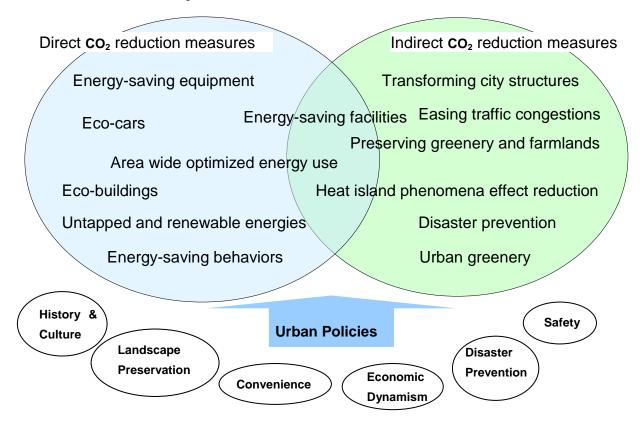


Figure 6 Measures for Low Carbon Measures

The APEC LCT sets CO_2 emissions reduction as a main goal and adopts energy and CO_2 related indicators. Other indicators like reduction of car traffic, reduction of waste, reuse of water, etc. are used

as supplemental indicators of CO_2 emissions reduction. As these measures are interrelated, it is important to select the most appropriate set of measures when designing low carbon towns.

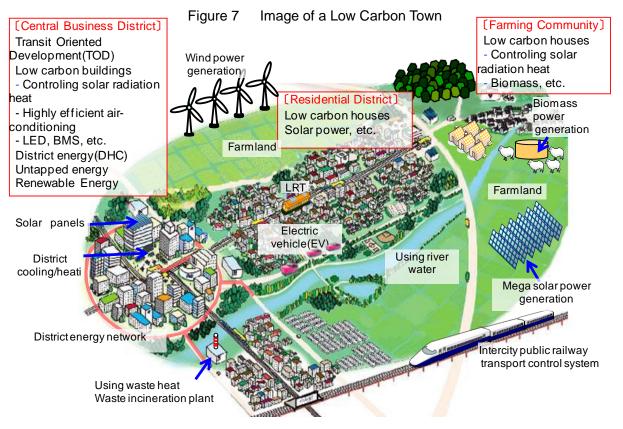
There are several sustainable urban development projects on going in the APEC region. Some have a broader objective of achieving a sustainable development through setting multiple goals, such as green society, recycle based society and mitigating heat island phenomenon. In these projects, there are several different indicators to measure the progress towards the targets.

For example, the Asian Green City Index, which is a research project conducted by the Economist Intelligence Unit, measures and assesses the environmental performance of 22 major Asian cities. It adopts 29 indicators which cover 8 different categories, namely, energy and CO₂, land use and buildings, transport, waste, water, sanitation, air quality and environmental governance.

2.2 What is the APEC LCT?

The APEC "Low-Carbon Town (LCT)" refers to towns in the APEC region that have a clear target of CO_2 emissions reduction and comprehensive measures to achieve it for sustainable development and a mechanism to monitor the progress toward the target of CO2 emissions reduction.

In this report, a town is defined as part of a city, while a city stands for any size of cities ranging from a small city to a big city and a greater city area. As per this report, a district is considered part of a town. A town also means a village as a village is deemed as a smaller agricultural/fishing/resort town/area.


There are two types of low carbon town development, namely, greenfield development and brownfield development (redevelopment of an existing city). In the case of greenfield development, it will make sense to make a low carbon development plan covering a whole city. In the case of brownfield development, it is not practical to make a whole existing city low carbon at one time. Instead, a low carbon development will normally proceed on a step by step basis, for example, from one district to another or from one part of city to another.

To summarize, the APEC LCT means towns, cities and villages which seek to become low carbon with a quantitative CO₂ emissions reduction target and a concrete low carbon developing plan irrespective of its size, characteristics and type of development.

Figure 7 shows the image of the APEC LCT where the most suitable low carbon measures are applied to different districts of the "Town" in a comprehensive manner considering cost effectiveness, availability of resources and characteristics of each district.

Towns in the APEC region have varying degrees of population, population density, economic capability, climatic conditions, and level of basic infrastructure provision. There is also different land usage patterns observed in the towns, for example, one town may be comprised of mainly business and commercial districts, while another town may be comprised of a primarily industrial manufacturing district, and another mainly comprised of residential districts, while another may be an agricultural town, etc. An applicable combination of low-carbon measures and available non-fossil energy resources will be

different according to the characteristics of the town for a low carbon development.

Source: based on Special Report SR-79,2008, National Institute for Environmental Studies

2.3 The Criteria for the APEC Low Carbon Model Town Project

The low carbon town development project which will apply for the feasibility study of the APEC Low Carbon Town Project is selected by EWG as a model for planning or implementing the APEC LCMT. The criteria for selecting the low carbon town development project are as follows.

- The low carbon development project is coordinated or supervised by a relevant government authority of the APEC member economy. It is ideal if the LCT is under cooperation with other member economies.
- Responsible entity for the low carbon town development project is identified, and the project is already on-going or has been committed to being implemented.
- The low carbon development project implementation plan has been developed. The plan should include major items, such as land use plan, transportation plan, energy plan, environment plan and area management plan.
- Organization and people responsible for the F/S have been identified, and committed to provide necessary information for the purpose of F/S. Member economy may need to prepare for necessary funding and human resources for internal use.

Any low carbon development projects are candidates for future APEC LCMT Project, and will not be excluded from the selection for the reason of its size, scale and characteristics.

The F/S, which is conducted under the LCMT Project, provides the local government officials, municipal officials and the developer with a clear assessment on the most appropriate low-carbon measures in a comprehensive manner. It will also provide the opportunity to test the viability of the low carbon development strategies they have taken. The F/S will proceed according to the process specified in the strategy to develop a low carbon town discussed in Chapter 3. An ordinary feasibility study is conducted to determine if and how a project can succeed with an emphasis on identifying potential problems before the actual project is initiated. In this sense, the F/S provided by APEC LCMT project is different from an ordinary feasibility study.

The Yujiapu CBD (Central Business District) project in Tianjin, China was selected as the first case of the F/S, as jointly proposed by Japan and China at the EMM9. It is located on the east coast of northern China and is about 40 km east of Tianjin City Center. Yujiapu is the largest CBD development plan in BINHAI new area, in Tianjin city where a variety of large development projects have been in progress. The district consists of 120 blocks and is expected to be a business center for finance and insurance in China. Land use of CBD is mainly office and commercial, but hotels and residential facilities will also be located in the district.

The project is already being undertaken by a local development company with the strong support from the Tianjin local government. It is planned that the site area is approximately $3,650,000 \text{ m}^2$, day time population is approximately 500,000, and a completion target year is 2020. The F/S is conducted by the urban design consultant selected by the APEC Central Secretariat.

Similar aspirations for large-scale urban developments are also on the rise in other APEC economies, especially in Asia. At the same time, there are different types of low carbon town projects on going or under planning, which vary in size and design approach according to their individual circumstances. An appropriate set of low carbon measures to be applied will be different depending on the size of the area and the characteristics of the town. However, the strategy to develop a low carbon town is basically the same irrespective of the magnitude and characteristics of the low carbon development. Therefore, it will be valuable to undergo a feasibility study of the planned low carbon development project in various APEC member economies, where the overall planning process and strategy will be reviewed. It will also be valuable to have an assessment of policy issues by Study Group B. Policy issues include:

- What kinds of regulatory schemes are appropriate for land use, energy use, water quality, air quality, etc.?
- How should government be best organized for the town/city/region to promote low-carbon development?
- What kinds of economic incentives can be used?
- What kind of infrastructure investment is most suited?

Chapter 3 Basic Approach to Develop the Low-Carbon Town

There are cities and areas within the emerging economies in the APEC region that have quickly developed in recent years and have not gone through the systematic planning and assessment of low-carbon town development. Given these situations, the necessity of developing a low-carbon concept that defines an effective approach on how to develop the low carbon town in the APEC region is increasingly important.

3.1 Overall Planning to develop the Low Carbon Town

The procedure of overall planning to develop the low carbon town is shown in figure 8. First of all, when planning a low-carbon town development, a full and complete understanding of goals and backgrounds of the central and local government's low carbon plan is indispensable so as to confirm that the low carbon town development plan is consistent with the economy level plan. For this reason, coordination and cooperation with relevant offices in all tiers of government should be pursued as necessary.

The first stage of the overall planning of the low carbon town is to develop a low carbon town development plan. The plan is closely associated with the distribution of town functions, land utilization, and control of building density, etc., especially in the case of urban development. Therefore, a low carbon town development plan should be developed by taking advantage of the ordinary town development plan already in place.

The first step is to make the target area clear including a clear definition of the town area, highlighting the perimeter and boundary of the town, and whether it is a greater city area, a whole city, a district within a town, or a block within a district. The next step is to completely grasp the characteristics of the area for the development. These are important steps because ideal combinations of low carbon measures for creating a synergistic effect will vary depending on the size of the area and its characteristics.

Examples of effective measures for the low carbon development plan for a big city may include, strengthening of traffic axes via a public transportation system such as LRT (Light Rail Transit), BRT (Bus Rapid Transit), etc. and guiding land utilization to areas near such traffic axes, coordinated creation of a green network along the traffic axes, and provision of incentives to utilize lands near unused heat source. On the other hand, if it is a low-carbon development plan at the level of a district within a town or a block of a district, spatial utilization of energy tailored to its main activity centers, leveling of energy load through mixed use of various energy sources, side-by-side development of energy and transportation facilities with parks and other spatial development, and transport and energy management using AEMS (Area Energy Management System) might be effective.

The last step of this planning stage is to develop a low carbon development basic plan. In that regard, it is essential to take a holistic approach, giving full consideration to other aspects of towns rather than just CO_2 emissions reductions, such as economic dynamism, convenience and disaster prevention, etc. in order to develop an attractive as well as economically sustainable low carbon town. Developing a low carbon town relates closely the way the life will be in the future of the town. Therefore, it is also important to take a transparent decision making process including relevant stakeholders in order to develop a

viable plan which gains full support from the people.

There are many stakeholders involved when planning a low carbon town. Therefore, it is not easy to get them properly involved in the transparent decision making process. At a later stage of the LCMT project, policy issues will be assessed, such as what kinds of regulatory schemes are appropriate for land use, energy use, water quality, air quality, etc. At that time, the issue of a transparent decision making process will be explored.

The second stage of planning the low carbon town is to develop its strategy. Key steps of developing a low carbon town development strategy are to collect necessary energy and CO_2 emissions related data, set quantitative low carbon targets, and select the most appropriate set of cost effective low carbon measures. This will be discussed in the following section in detail.

The last stage is to actually design, construct and operate a Low Carbon Town based on the Low Carbon Town development strategy. It is not covered in this "Concept of the Low Carbon Town". However, it will be discussed when the "Concept of the Low Carbon Town" is to be further refined, and a practical guide may be prepared at a later stage of LCMT project depending on the results of the discussion.

3.2 Strategy to Develop the Low Carbon Town

It is essential to set quantitative low carbon reduction targets with a time frame to achieve them, and select the most appropriate set of low carbon measures in a comprehensive manner. These make up the core of the strategy to develop a low carbon town. The process to follow under this strategy, which starts with collecting energy related data and ends with selecting measures, is shown in figure 9 in detail.

1) Collecting data on energy use and CO₂ emissions

Baseline energy balance and energy efficiency data for all sectors as well as predicted future energy consumption. It is important that these data be collected from reliable and consistent sources.

2) Setting quantitative low carbon targets

The quantitative low carbon targets are set for the town as a whole, considering the upper level low carbon target, i.e., economy level, provincial level, etc., and characteristics of the intended town. It is recommendable to set both an overall and sector specific low carbon targets, for example, building sector, transportation sector, and residential sector as a holistic approach is effective to reduce CO_2 emissions across a town.

The way which is explained here on how low carbon targets are set is a so called "Top-Down Approach". The targets set this way are not backed up by the result of CO_2 reduction calculations which would come out through applying a certain set of low carbon measures. So, ideally, the target should be backed up by the ideas on how much CO_2 reduction could be possible through studying the actual examples where the same low carbon measures were applied to other towns with similar characteristics.

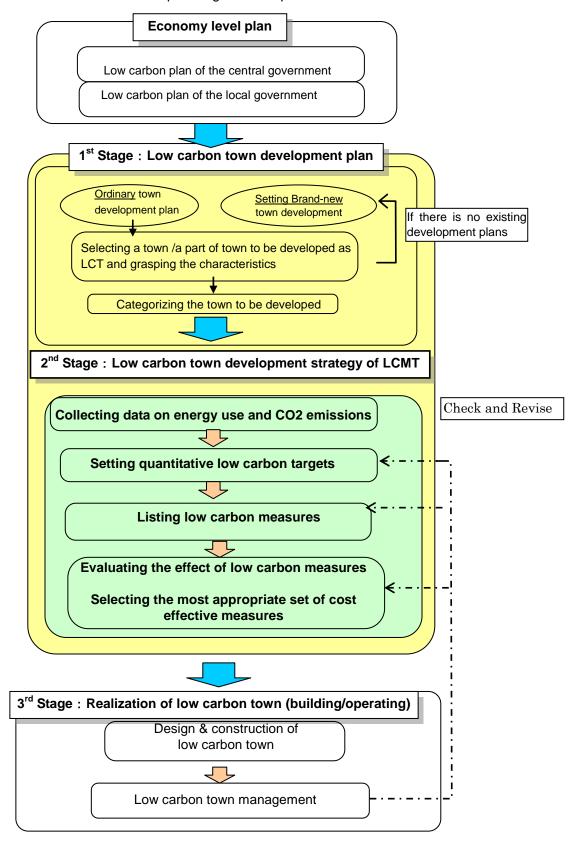


Figure 8 Procedure of overall planning to develop the low carbon town

To evaluate the effect of low carbon measures, proper indicators should be selected. These indicators will also be used to measure the progress toward the targets in the implementation stage. There are several different indicators to measure CO_2 reduction. The following indicators could be used to assess low-carbon objectives directly.

- Reduction in CO₂ emissions: t-CO₂/ year, t-CO₂/ year- floor space
- Reduction in CO₂ emissions per GDP
- Reduction in CO₂ emissions per person
- CO₂ emissions reduction rate (%)
- Reduction in primary or secondary energy consumption: GJ / year

There are other indicators, which could be used complementarily so as to enable a multi-dimensional assessment of low carbon targets.

- Reduction in the amount of traffic
- Public transportation conversion rate
- Reduction in wastes produced
- Water recycling rate

3) Listing low carbon measures

There are limits to the measures that can be selected to pursue a low-carbon town solely from the energy supply side. However, by combining low-carbon measures from the energy demand side along with the supply side, greater results can be achieved. A comprehensive low-carbon approach that aims to balance both the demand and supply side energy consumption is crucial.

For this purpose, the most possible low carbon measures that can be adopted for developing a low carbon town should be screened based on the town categorization, which will be mentioned in Chapter 4. Then, a listing of these measures will be carried out on the energy supply side and demand side, with more detailed classification on both sides, for example, building, transportation, etc. on the demand side. An example of the classification of low carbon measures is shown in the table of the appendix 2.

It should be noted that, in districts where essential infrastructure—including roads, waterworks and sewerage facilities (and water supply and distribution networks and sewer main networks), and waste treatment centers—are being constructed, it will be important to achieve CO₂ reductions targeted within actual infrastructure development.

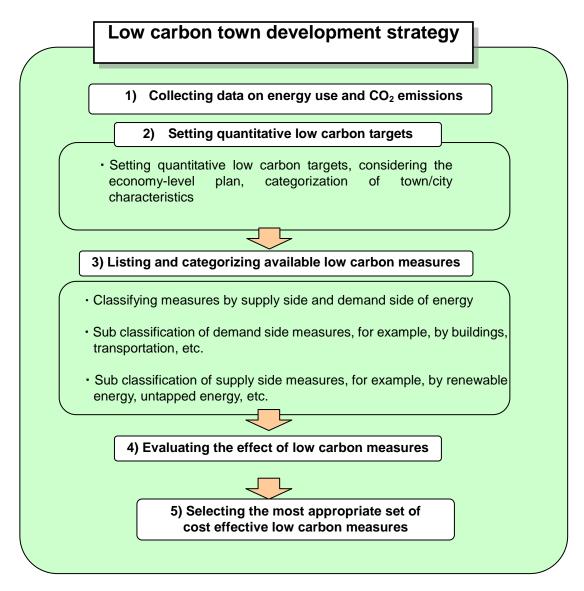
4) Evaluating the effects of low carbon measures screened through the previous step

Based on the energy and CO₂ related data, the effect of low carbon measures in terms of CO₂ emissions reduction is to be made for each measure using an appropriate method. A variety of simulation models and tools are developed for conducting comprehensive and detailed simulations of energy-saving measures. These include energy efficiency improvements for different building types (such as office, commercial and residential buildings), area energy systems such as DHC (District Heating and Cooling) systems, and technologies for the utilization of untapped energy supplies.

The effect will be summed up to generate total CO_2 emissions reduction as well as sub-total of CO_2 emissions by the classification of low carbon measures. The costs of implementing these measures are also estimated. The method how the effect of low carbon measures should be evaluated will be explained in Part II of "The Concept of the Low Carbon Town in the APEC".

5) Selecting the most appropriate set of cost effective low carbon measures

The most appropriate set of cost effective low carbon measures to achieve the set targets is to be selected by considering the cost required for implementing these measures versus the benefits that will be acquired. In some cases, the selection will be made in reference to the basic low carbon development plan, which covers wide ranging features of the town at present as well as the future vision of the town. From this perspective, it may become necessary to prepare multiple options.


The step from 3) to 5) is the process to check the validity of the set targets. The work needs wide ranging professional expertise of urban design, and therefore, they will normally be commissioned to urban design consultants.

APEC LCMT Project is designed to provide responsible government officials with the opportunity to assess and refine the low carbon development plan through conducting F/S.

Rural areas have lower land use density compared to central business districts (CBDs) and can more easily access renewable energy and untapped energy sources from forests, rivers, and other natural features. Thus, introducing mega solar power generation, large-scale wind power generation, hydropower generation, and other systems that take full advantage of such regional characteristics must be proactively considered in these areas. Here, medium- to long-term construction plans that take into account not only current energy efficiency but also efficiency improvements to be gained from future technical innovation should play an important role.

In the transport sector, under low-density land-use conditions, building railroads and other public transport infrastructure that entails high construction costs will be difficult. Given this, methods that lower the carbon emissions of automobiles, buses, motorcycles, and other vehicles (e.g., by using biofuels, using electric vehicles, etc.) will be effective.

Chapter 4 Characterization of Towns and Low Carbon Measures

Low carbon measures are classified according to whether they are on the supply side or demand side of energy. Cogeneration system, DHC (District Heating/Cooling) system, using untapped energy such as waste heat from waste incineration plants and use of renewable energy like biomass power generation, etc. are classified as supply side measures. Meanwhile, TOD (Transit Oriented Development), energy efficient buildings, public transportation system and energy management system, etc. are classified as demand side measures.

It is worthwhile to mention that depending on the characteristics of town, it makes a difference as to whether these measures can be easily adopted or not, and/or whether they exert far-reaching effects or not. So, it is a useful approach to characterize the type of towns when selecting the most appropriate set of low-carbon measures.

There are several different characteristics of towns; including 1) climate conditions like solar irradiation, temperature, wind conditions, 2) geography like flat landscape or hilly land, 3) industrial structure, for example, the way different kind of industries are located across the town, 4) town structure or intensity of land use, namely, whether town is developed intensively in 3D space or it is developed loosely in 2D space and 5) town infrastructure, whether it is sufficiently developed or not.

It is worthwhile to note that town structure as well as its industry structure will change along with its growth. Therefore, the government officials responsible for low carbon town development, especially in the developing economies where rapid growth of town is being observed, should look at the future picture of the town, or even think about guiding these changes from a view point of reducing CO_2 emissions in the town.

There are several different types of categorization reflecting the different socio economic conditions of towns. Table 1 show the categorization which is based on land related characteristics, such as size of the town, population density, and land utilization for the purpose of Low-Carbon Town project.

	Type of Town			stics of Town		Infrastructure	Laws and
Symbol		Туре	Size	Population Density	Land Usage	Development	Regulations
I	Urban	CBD	100ha-	High	Mixed	Sufficient	Sufficient
11		Commercial Oriented Town	-100ha	Middle to High	Mixed		
111		Residential Oriented Town		Middle	Mainly Housing	Insufficient	Insufficient
IV	Rural	Village Island		Low	Farming Fishing Resort		Limited

Table 1 Characterization of Town

City infrastructure, which is categorized into water/environment infrastructure, energy infrastructure, communications infrastructure and mobility infrastructure, supports the wide variety of activities in the city. Therefore, the level of its provision makes a big difference in evaluating whether a particular low carbon measure is applicable or not, especially in the case of introducing an advanced low carbon technology like a smart grid. So, it is an important factor to be considered in selecting the appropriate measures.

Laws and regulations are also an important factor to develop a low carbon town. Take reuse of raw garbage in Japan. Japan has technologies to utilize raw garbage into energy. However, present national legislations regulate collecting raw garbage beyond the border of the local government, resulting in the delay of practical applications of these technologies.

The list of low carbon measures along with their applicability based on the town categorization is shown in the Appendix 2.

In the APEC region, there are several towns where a low carbon development project is ongoing or being planned. These projects vary in size and design approach according to their individual circumstances. The following table 2 shows some examples of low carbon town development projects based on the available information, and classified according to the type of town described as above. More examples will be added as there are more planned low-carbon towns in the APEC region.

Type of Town	Low Carbon Town Project	Economy	Population
I Urban (Central	Yujiapu CBD, Tianjin st_1	China	500,000
Business	Sino-Singapore Tianjin	China	350,000
District :CBD)	Eco City		
	Quezon City Green CBD	Philippine	
П	Putrajaya Green City	Malaysia	68,000 (300,000
Urban(Commercial			planned)
Oriented Town)			
	Chiang Mai	Thailand	160,000
	Da Nang (Pilot City of WB	Viet Nam	1 million *
	Eco2 Cities Project)		
	Cebu City (Pilot City of	Philippine	820,000*
	WB Eco2 Cities Project)		
	Surabaya (Pilot City of	Indonesia	2.8 million*
	WB Eco2 Cities Project)		
	Yokohama Smart City	Japan	3.7 million*
	Project		
ш	Plunggol Eco Town	Singapore	
Urban(Residential			
Oriented Town)			
IV Rural	Muang Klang Low Carbon	Thailand	17,000
	City		
	Jeju Island Smart Green	Korea	6,000 households
	City		
	Low Carbon Island	Chinese Taipei	88,000
	(Penghu Island and		
	Others)		
	Samui Island ^{**2}	Thailand	53,990

Table 2Low Carbon Town in the APEC

%1 LCMT Phase I feasibility study

%2 LCMT Phase II feasibility study

* Total population

Chapter 5 Summary of Part I

The LCT Concept aims to promote the development of low-carbon towns in the APEC region by providing a basic principle that can assist the central and local government officials of the member economies in planning effective low-carbon policies and in formulating an appropriate combination of low-carbon measures while taking socio-economic conditions and city specific characteristics.

Setting quantitative low carbon targets is an essential element when planning a low carbon town development, as is the case with APEC PREE project. In the developed APEC economies, most of the local governments and municipalities have already started undertaking a task of developing low carbon towns. However, the level of their efforts in planning with targets is still at an early stage. Take Japan for example, more than half of municipalities are judged to be at 1st or 2nd level under the 4 levels classification of their efforts, namely, 1) making a start, 2) stepping forward, 3) moving for the top, and 4) taking a lead over others.

In the emerging economies in the APEC, there are a number of cities which have quickly developed in recent years. Therefore, it is no wonder that such cities do not always have the systematic methodology for planning and evaluating low-carbon town development. For example, in Japan, it is just 2010 when a report on "How to design low carbon cities" was published, which includes a concept for low-carbon town development and calculation methods of CO_2 mitigation. Given such circumstance, to develop the APEC "Concept of the Low Carbon Town" would be considered as a forehanded attempt.

Another important element described in "the Concept" is selecting a set of appropriate measures considering town characteristics. It is because that those town characteristics are critical for selecting appropriate measures. At the same time, it is to be noted that town characteristics such as city structure is variable so that it would be possible to guide transformation of town into economically as well environmentally sustainable one through carefully planning low carbon town on a long term perspective.

The Concept of the Low-Carbon Town in the APEC Region

Part II

Fourth Edition

November 2014

Chapter 1 Basic Approach to Developing a Low Carbon Town

1.1 Overall planning for development of a low carbon town

The overall planning process for the development of a low carbon town is shown in Figure 1.

The essential preparatory step is to gain a full and complete understanding of the goals and background of your economy's central and local government low carbon plans, to ensure the low carbon town development plan is consistent with economy level planning.

The first stage of the actual planning process is to develop a low carbon town development plan. This needs to build on the existing urban development planning if available, especially in regard to integration of town functions, land utilization, and control of building density,

A low carbon town development plan will focus on setting targets for reducing CO_2 emissions. It should also emphasize that land utilization, urban transport, energy, green space etc. should be considered in a comprehensive manner. When addressing the integration of town functions, it may be useful to outline the basic principles of area energy network (including District Heating and Cooling) and energy management, while the discussion of the control of building density may need to define appropriate town scale and population density in line with the ideal of a compact town.

Town development planning traditionally centers on the transportation and energy departments of local governments and municipality offices, with supporting roles played by other departments such as science, technology and telecommunications. A difference in the low carbon development process is that environmental departments also need to be central to the planning process.

The scope of the plan needs to be set, including a clear definition of the town area, highlighting its perimeter, and whether it is a greater city area, a whole city, a district within a town, or a block within a district. The next step is to identify the characteristics of the designated area. This is essential, as ideal combinations of low carbon measures for creating a synergistic effect will vary depending on the size of the area and its characteristics.

The last step of this initial stage is to prepare a low carbon development plan. This requires a comprehensive planning approach, giving full consideration to other aspects of towns besides CO_2 emissions reduction, such as economic dynamism, convenience, and disaster prevention, to develop an attractive as well as economically sustainable low carbon town. Low carbon town development relates closely to the way the life will be in the town's future. Therefore, it is also important to take a transparent decision making process including relevant stakeholders in order to develop a viable plan which gains full support from the people.

The second stage of planning the low carbon town is to develop the development strategy. Key steps include collecting the necessary data about energy and CO_2 emissions, setting quantitative low carbon targets, and selecting the most appropriate set of cost effective low carbon measures.

The last stage is to actually design, construct and operate a low carbon town based on the low carbon town development strategy. In this stage, it is essential to monitor and report CO2 emissions to ensure that the city remains on a low-carbon path. It is not covered in this "concept" document.

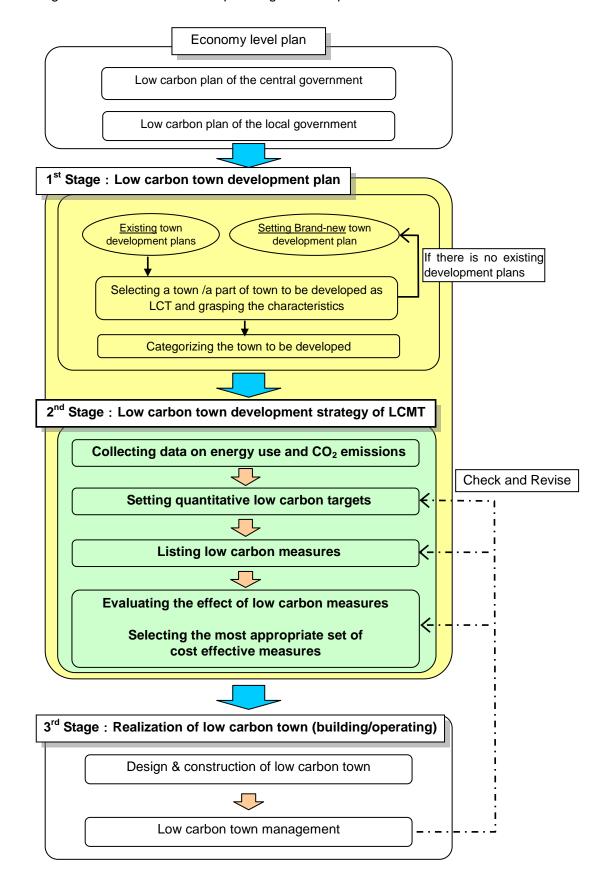


Figure 1 Procedure of overall planning to develop the low carbon town

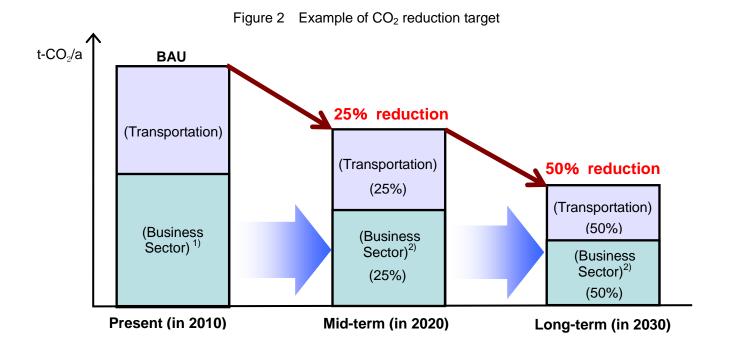
1.2 Setting quantitative low carbon targets

The recommended course is to set low carbon targets for the town as a whole, taking account possible carbon reductions in each sector such as building, transportation, etc.

The validity of these targets can be checked using the "Plan Do Check Action" (PDCA) process:

Set the targets for the town as a whole \rightarrow select the set of low carbon measures to apply to the individual sectors \rightarrow conduct trial calculations of the effects on CO₂ reduction \rightarrow determine whether the target can be achieved based on the trial calculations \rightarrow examine the alternative set of measures if the reduction target is not met.

There are various indicators that can be used to measure CO_2 reduction. Indicator selection is the key to accurate evaluation of the effect of low carbon measures. These indicators will also be used to measure progress toward the targets in the implementation stage.


The following indicators could be used to assess low-carbon objectives directly.

- Reduction in CO₂ emissions: t-CO₂ / year, t-CO₂ / year- floor space
- Reduction in CO₂ emissions per GDP
- Reduction in CO₂ emissions per person
- CO₂ emissions reduction rate (%)
- Reduction in primary or secondary energy consumption: GJ / year

There are other indicators, which could be used complementarily so as to enable a multi-dimensional assessment of low carbon targets.

- Reduction in the amount of traffic
- Public transportation conversion rate
- Reduction in wastes produced
- Water recycling rate

The baseline for calculating the reduction amount is based on the CO_2 emission amount in the target region in the base year. The base year itself is selected in reference to the policies of the economy and town concerned. In the case of unused land where no development is being pursued at present or where a large-scale development is planned, it is desirable to set the CO_2 reduction amount of BAU (Business as Usual) under the assumption that the development will be carried out without employing any low carbon measures.

- 1) Standard type buildings without low carbonized
- Business sector includes the reduction effects in terms of buildings, district energy, unused /renewable energy etc.

<INDICATOR OF SUSTAINABLE TRANSPORTATIN PLANNING>

Developing and implementing efficient transportation policies and programs will require more rigorous collection, analysis, and dissemination of both quantitative and qualitative transport data. The following resources deal with the selection of indicators of sustainable transportation planning.

Resources for Developing a Data Collection Methodology

"Developing Indicators for Comprehensive and Sustainable Transport Planning" outlines how to identify, organize and collect indicators. (http://www.vtpi.org/sus_tran_ind.pdf)

"New Zealand Transport Monitoring Indicator Framework" is a tool for monitoring and evaluating transport policies and programs. It contains a large set of transport indicators that the Ministry of Transport updates on an on-going basis.

(http://www.transport.govt.nz/ourwork/TMIF/Documents/TMIFV2%20FINAL.pdf)

Chapter 2 Measures to Use in the Development of a Low Carbon Town

As in the Figure 3, low carbon measures can be categorized under these headings:

- 1. Town Structures
- 2. Buildings
- 3. Energy Management Systems
- 4. Transportation
- 5. Area Energy Network
- 6. Untapped Energy
- 7. Renewable Energy
- 8. Smart Grid System and others
- 9. Smart Energy System
- 10. Water Treatment
- 11. Solid Waste Management
- 12. Greenery

Measure types 1 - 4 are on the energy demand side, and measures type 5 - 7 are on the energy supply side, while measure types 8 -11 straddles both energy demand and supply. An overview of these measures and basic ideas on how to introduce them are provided in the following section. Measure type 12 is useful for preventing the heat island phenomenon.

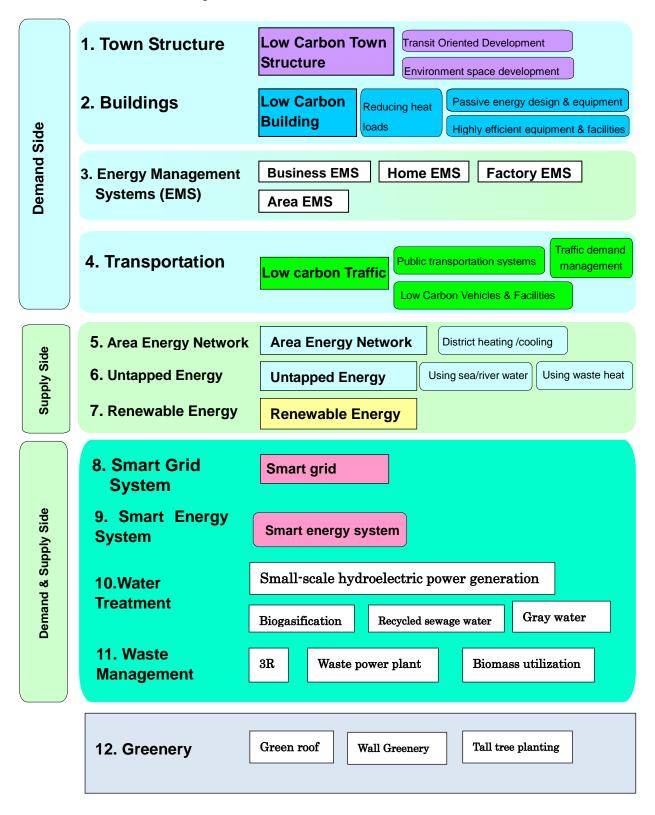
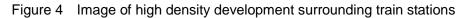


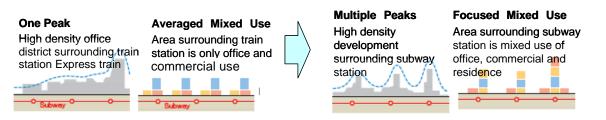
Figure 3 Overview of low carbon measures

2.1 Measures on the energy demand side

2.1.1 Low carbon urban structure and Land Use

1) Low carbon urban structure(TOD Type Land use)


Transit Oriented Development (TOD) is to create a town concentrated around public transportation systems, which do not depend on automobiles. TOD has the following specific development means.


- Build a less CO₂ emitting town area by improving the land use around the stations of the public transportation systems, as well as through systematic development of commercial, public, and residential areas.
- Build a town area whose transit is based on walking, bicycle, bus, etc. without depending on automobiles through concentrating a broad range of urban functions around the main transportation nodal points.

< TRANSIT MALL >

Many towns in APEC developed economies have established a commercial space called a Transit Mall. It limits the car ride, and allows pedestrians and mass transit systems including buses and trancars. Transit Mall is expected to vitalize the central built-up areas, improve road transportation environment and public transportation services.

When residential and office buildings are planned in the same area, energy demand equalization and/or energy sharing systems would be required to absorb the different peak energy demands.

<TOD Examples>

Creating a plan—New Zealand Transport Strategy http://www.transport.govt.nz/ourwork/Documents/NZTS2008.pdf Transport oriented development in Subiaco Australia: http://www.mra.wa.gov.au/Projects/Subi-Centro/About-the-Project/ Bicycle Network in Chinese Taipei: http://biking.cpami.gov.tw/Page (in Chinese Only)

2) Low carbon land use

Given predictions that population and economic growth will continue in the APEC region, it is anticipated that urbanization of suburban, rural, and island areas will expand, leading to greater numbers of cars and buildings. This makes it necessary to formulate and execute plans that are founded on future population growth and composition and economic growth in such areas. Such plans should include encouraging use of appropriate development sites, use of low-carbon buildings, and systematic development of public transportation.

The urban planning in developed countries that are grappling with aging societies and falling birthrates, is required to change land-use planning for decreasing populations such as suburban "smart shrinkage", or land-use planning well coordinated with public transportation plan. Given declining population and societal aging, challenges are likely to emerge in the future in regions that are currently enjoying continued economic growth, therefore land-use plans that take into account similar changes in socioeconomic conditions should be prepared at the present time.

2.1.2 Low carbon building

In office and commercial buildings, a lot of electricity and heat energy are used for air conditioning, lighting, office automation (OA) equipments, and for hot water supply. The same applies to residential buildings, although on a different scale. When evaluating the low carbon building measures, it is advisable to follow the following three steps as it will lead to more efficient and cost effective CO_2 reduction.

1st Step: Reduce heat load into the building through rooftop greenery and improvement of the heat insulation of the windows, etc.

2nd Step: Deploy passive energy design such as natural lighting and natural ventilation.

3rd Step: Improve energy efficiency in air conditioning, lighting equipment, etc.

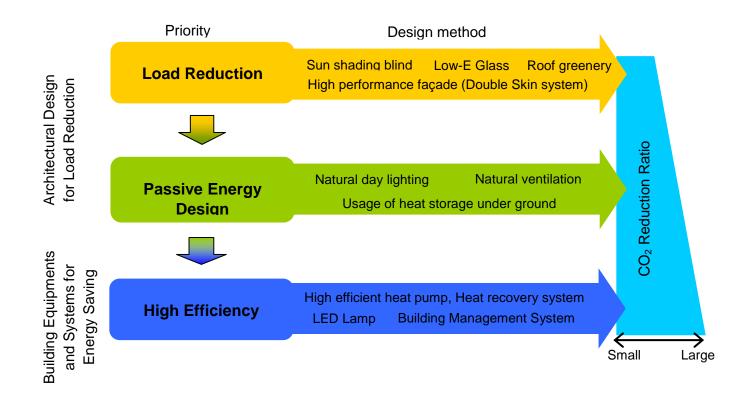
There are plenty of reduction measures within each step. It is necessary to examine the most appropriate combination of measures considering the use, targeted CO_2 reduction amount, construction cost etc. of the intended buildings.

i) Reduction of heat load in the building

Evidence shows that heat energy demand for cooling/heating and electricity use for lighting depends greatly on the structure of the building, its outer environment and the use of the building.

In order to reduce CO_2 emissions associated with the building, the first step is to consider measures that will create a comfortable work and living environment in the building using less energy, in other words, the measures which will reduce the energy load of the building.

Compared to large-scale businesses and commercial buildings, large hotels, or high-rise residential complexes, it will be difficult for small- and medium-sized resort hotels (comprised of cottage-type buildings) and low- and medium-rise housing to introduce centralized energy supply systems (e.g., DHC,


central heat sources, central hot-water systems, etc.) Here, the further introduction of highly efficient equipment and facilities—such as high-efficiency air conditioners, heat-pump water heaters, and latent heat recovery-type water heaters—plays a very important role in reducing a building's CO_2 emissions. In addition, for small buildings, reinforcing insulation by using rooftop greenery, solar reflectance paint on roofs, etc., as well as use of natural energies (such as natural ventilation and natural lighting) will amplify the effectiveness of CO_2 reduction methods and should be actively introduced.

ii) Adoption of passive energy design

It can be effective to adopt passive forms of environment-friendly technology, which makes use of sunlight, solar heat, wind, rainwater and geological conditions to adjust the indoor environment. For example, it may suit to construct buildings that maintain comfortable room temperature by adopting sun shading blinds and cooling with outside air, and ensures the brightness and clean air by utilizing daylight and natural ventilation respectively.

iii) Improvement of equipment efficiency

Energy use in the building can be reduced by adopting high efficiency equipment for functions such as air conditioning, lighting, office automation, hot water supply. Schematic design flow of low carbon building is shown in Figure 5.

Figure 5 Schematic design flow of low carbon building

2.1.3 Energy management systems

i) Building-level energy management systems

Building-level energy management systems prevent unnecessary energy use by automatically adjusting the operation of equipment in a building. For example, this kind of system turns off lights in unused rooms and controls the air-conditioners and lighting in response to variations in room temperature and light intensity. Depending on the type of the targeted buildings, there are different forms of building-level energy management systems; building energy management systems (BEMS), home energy management systems (HEMS) and factory energy management systems (FEMS). Their introduction can result in significant reduction of energy use.

ii) Regional or district-level energy management system

Energy management systems at regional or district level will prevent unnecessary energy use in the central heat supply plants. These systems use surveillance and control systems and high-speed communication networks to monitor and control the plant operation. This energy management system is called AEMS (Area Energy Management System). AEMS may be regarded as an area-wide energy use based on IT technology, and this system has already been put to practical use.

2.1.4 Low carbon transport

i) Low carbon measures in the transportation sector

Most of the CO_2 emissions from the transportation sector come from motor vehicles. CO_2 emissions from vehicles are represented as the product of traffic volume, distance traveled (trip distance) and emission intensity of automobiles. It follows that the low-carbon measures for the transportation sector will be based on measures to reduce values of these three factors by:

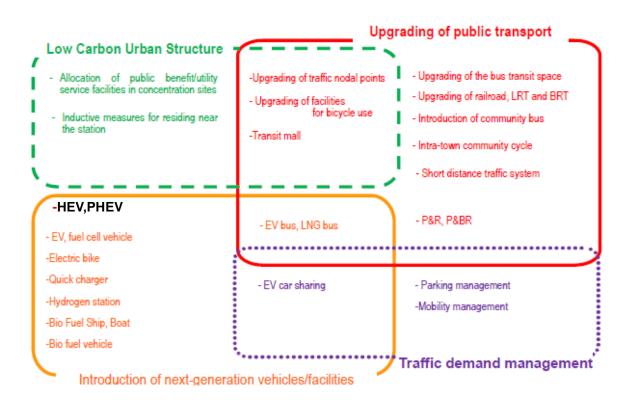

- a Reducing traffic volume through promoting the shift to walking or bicycling and using mass transit systems such as trains, which have less per capita CO₂ emissions than automobiles
- b Reducing the distance that needs to be traveled, for example, through promoting a compact city which shortens the commuting distance
- c Reducing intensity of CO₂ emissions per unit distance traveled through improving the road conditions to reduce time spent in traffic, introducing more fuel efficient vehicles, using alternative fuel vehicles, and eco-drving.

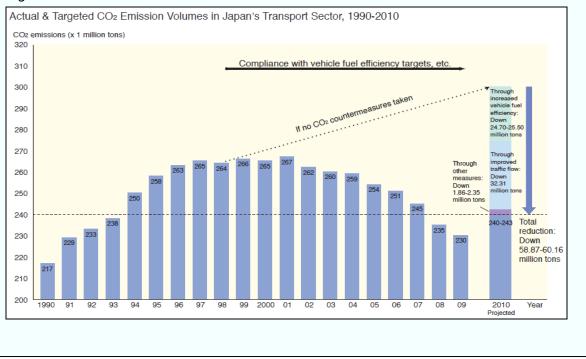
Figure 6 shows how these low carbon transport measures can be integrated in low carbon town structures.

The effects of measures to reduce CO_2 emission may not be obtained as anticipated if the measures are implemented individually. It is recommended that measures are implemented in ways where the greatest synergetic benefits can occur. The most important is to combine promotion of public transit

systems with traffic demand management for motor vehicle. In addition, it is recommended practice to review how well the existing public transit facilities fit the requirement of the particular town.

It should be noted that applying fuel efficiency regulations on vehicles introduced in a country together with measures in the targeted town will make it possible to promote lower CO_2 emission in both the targeted town and the country as a whole.

Figure 6 Combination of low carbon traffic measures


Changes in CO₂ emissions in Japan's transport sector

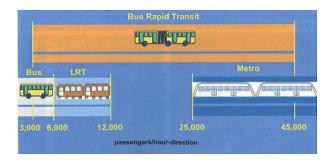
In Japan's transport sector, CO_2 emissions have been steadily declining since peaking in the early 21st century. This decline is the result of successful implementation of the following integrated measures.

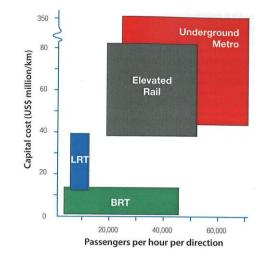
Road transport accounts for approximately 90% of CO_2 emissions in the transport sector. The volume of CO_2 emissions in the transport sector is obtained by multiplying together actual driving fuel efficiency, the CO_2 emission coefficient, and total distance traveled. Effective means of improving actual driving fuel efficiency include not only improving the fuel efficiency of individual vehicles but also alleviating traffic congestion through traffic flow measures and efficiently employing "eco-friendly driving." Improving the CO_2 emission coefficient requires the introduction of next-generation vehicles using alternative fuels that emit little CO_2 (electricity, hydrogen, natural gas, biofuels, etc.). And effective ways of reducing total travel distance include improving the transportation efficiency of freight vehicles and appropriately combining public transportation systems and personal mobility (i.e., introducing a modal shift).

The comprehensive implementation of the above-mentioned measures successfully reduced CO_2 emissions in the transport sector from 267 million tons at their peak in 2001 to 240 million tons in 2010.

The most rational way forward in reducing CO_2 emissions in the transport sector is to take integrated approaches—raising fuel efficiency, improving traffic flow, supplying appropriate fuels, using efficient vehicles, encouraging a modal shift, etc.—that involve all stakeholders, including automobile manufacturers, government, fuel businesses, and automobile users. The introduction of policies and measures to realize these approaches in ways that take regional characteristics into account is thus desired.

ii) Upgrading of public transit systems


Public transit systems can reduce CO_2 emissions by reducing the volume of traffic of private vehicles, such as automobiles and motorbikes. They can also reduce traffic jams and travel time.


There are many types of public transportation system including standard bus, bus rapid transit (BRT), light rail transit (LRT), and subway or metro systems. It is crucial to select the most appropriate system to match the town size and traffic demand. As shown in Figure 7, the capacity of a bus system is about 6,000 passengers per hour per direction, while that of an LRT system is 6,000-12,000 passengers, and a metro system is efficient for loads of above 25,000 passengers per hour per direction. Figure 8 illustrates the variation in capital cost between the different forms of public transportation.

Increased use of public transit systems can be promoted by improving the convenience of connections between different modes of transit, such as at train stations. Features to consider include barrier- free design, comfortable spaces for pedestrians and bicycle parking areas.

Figure 7 Transportation capacity by traffic mode

Figure 8 Transportation capacity and capital cost

<Spotlight: Bus Rapid Transit Systems>

Many BRT systems use specially designed buses—called "trunk" or "bi-articulated" buses—that are long and divided into two or three compartments. Such buses can carry up to 140 passengers and travel in exclusive bus lanes, often with signal priorities at traffic lights. Since BRT uses or builds on existing road infrastructure, it is less expensive than light rail. In some cases where demand for mass transit is expected to grow but is not yet sufficient to justify the cost of light rail, BRT is an effective way to build ridership and shift driving commuters to the use mass transit, potentially paving the way for future light rail projects.

Successfully changing commuter behavior to maximize ridership on new BRT systems depends to a large extent on system planning. Criteria for successful BRT systems include:

- Orientation (route alignment) to population centres and business/office centres
- Accessibility to housing and offices along the route
- Speed and efficiency of service (how fast to board, how fast to ride)
- Frequency of service at different times of day

iii) Introduction of next-generation vehicles and facilities

One option for reducing CO₂ emissions in the transport sector is to shift the current gasoline –driven cars and motorbikes to low-carbon emitting vehicles - such as the hybrid cars, electric cars, electric motorbikes and the fuel cell cars that are currently being developed and promoted.

 CO_2 emissions from an electric car are about 40% of that from a gasoline car. Fuel cell cars emit extremely small amount of CO_2 . Figure 9 shows comparative levels of emissions from different vehicle types.

Given power supply conditions in low-carbon transport, the possibility that electric vehicles will be effective in reducing CO_2 emissions is quite high. However, electric vehicles face a number of challenges, among them restricted cruising range compared to gasoline vehicles with current storage battery technology and the need to establish new charging stations over a broad area.

However, this point makes the introduction of electric vehicles suitable in remote islands and remote areas. This is because the travel range of residents and number of charging stations needed in such areas are naturally limited, thereby eliminating the above-mentioned disadvantages of electric vehicles, and because the price of gasoline generally tends to be higher there than on the mainland.

An effective option is the use of electric vehicles as rental cars in resort areas, where rental cars are a primary means of transport for tourists in resort area.

It is thought that the high cost of introducing low-carbon vehicles could inhibit the use of such vehicles. Measures to deal with this problem could include modifying existing vehicles (for example by converting them into electric vehicles or modifying them to run on biofuels) and applying high solar reflectance paint to the roofs of buses.

Motorbikes are now widely used in Southeast Asian economies - the motorbike share of total road traffic in Vietnam is almost 90%. While it is expected the number of automobiles will increase significantly along with economic growth in APEC economies, it is also anticipated that motorbikes will make up a high proportion of future vehicle use, and the development of electric motorbikes is considered imminent.

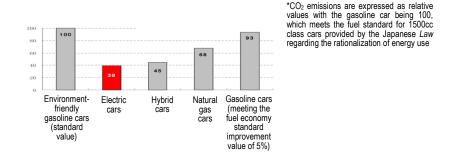


Figure 9 Comparison of CO₂ emissions by type of vehicle

In the case of resort islands, routine travel between the mainland and the island often involves ferries or other such vessels. Converting these vessels to run on biofuels will be effective in reducing carbon emissions. Other measures could include converting island fishing boats to run on biofuels and utilizing natural sunlight on pleasure boats.

iV) Traffic demand management

Traffic demand management is a valuable element of low carbon transport measures. This management includes parking management, mobility management, "park & ride (P&R) systems. "Park & ride" systems provide facilities for people to drive in a private car from home to the nearest train station or bus stop, park there and transfer to the public transit systems to get to the center of the town. The systems which allow people to make connections from private cars to buses are especially called "park and bus ride (P&BR)".

The greatest benefit in reducing CO₂ emission comes from supporting permanent change in commuter habits with other tangible measures.

<APEC Workshop on Policies that Promote Energy Efficiency in Transport (WPPEET)> The workshop, which was held in Singapore on 24-25 March, 2009 provided a lively forum on a range of topics that covered fuel economy standards, operational efficiency programs, freight efficiency, mass transit, reducing road congestion, land use and urban planning, and the

integration of transportation and energy policy.

http://www.apec-esis.org/www/egeec/webnews.php?DomainID=17&NewsID=178

2.2 Measures on the energy supply side

This section provides an overview of measures to reduce CO_2 emission on the energy supply side of low carbon town development.

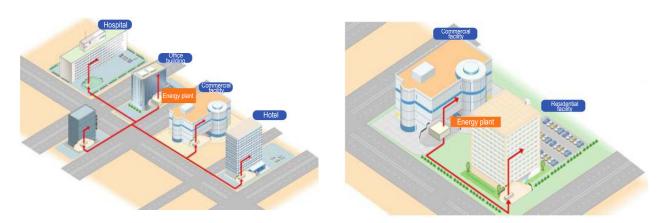
2.2.1 Area Energy Network

Area energy networks for low-carbon towns are classified into two patterns—"linked" type and "independent" type—depending on the relevant network's relationship with the energy networks of neighboring areas.

In the case of a "linked" type area energy network, it is important to build the network after taking into account the regional characteristics of not only the low-carbon town but also neighboring areas, the status of existing infrastructure, forecasts for energy and power demand, and other considerations. Particularly in the case of remote islands, means for transporting equipment infrastructure needed by the network, means for connecting the network (e.g., lying of undersea cables, etc.), and other matters must be fully considered.

In the case of an "independent" type area energy network, it is assumed that the area will satisfy its own energy and power needs. Thus, the network must pay even greater attention to securing balance between energy/power supply and demand and providing backup power during times of disaster than is required for a "linked" network.

A typical area energy network is a system that efficiently supplies cold/hot water to consumers from a central plant at the district or regional levels. The heat energy demand may be for cooling, heating or hot water supply, and is supplied via heat energy supply conduits, on a large scale.


These networks are possible in built-up urban areas around central transport nodes such as train stations where there is dense, mixed use of land, combining business, commercial, hotels, residential and cultural functions. These areas would usually contain a number of high-rise buildings, and variety of energy load patterns there would include some buildings with high energy loads.

It is possible to reduce CO_2 emission in a town through this kind of area-wide energy utilization by purposefully constructing an "energy center" that integrates heat demands of different buildings based on a network that allows for the cross supply of energy.

Area energy network can be divided into three categories, depending on their scale.

- a District heating and cooling systems (DHC), covering a wide area (Figure 10)
- b Point heating and cooling systems, targeting multiple buildings in a single site (Figure 11)
- c Cross-supply of heat among multiple buildings

Figure 10 District heating/cooling systems (DHC) Figure 11 Point heating/cooling systems

In recent years, co-generation (or CHP-combined heat and power) area energy networks that supply not only heat but also electricity have also been appearing, suburban residential and resort districts located in rural areas have relatively low energy consumption density per unit area compared to CBD. Thus, smalland medium-scale distributed power generation systems (co-generation), as well as small- and medium-scale power and heat networks that link the various forms of untapped energy and renewable energy to be mentioned below, are effective in such areas.

2.2.2 Use of untapped energy

i) Untapped energy sources

In many towns and cities, waste heat is constantly produced in plants that incinerate garbage and/or sewage sludge. However, these high volumes of waste heat are generally discarded, as there is little coordination with nearby energy demand. There are also other potential energy sources, such as river water, seawater, sewage water and sewage treated water. These can be used as a heat source or a heat sink using a heat pump technology, with the advantage that they vary less in temperature through the year than the ambient temperature.

These untapped energy sources could be developed at a regional level as part of low carbon town development.

Heat pump technology efficiently transfer the heat energy contained in air or water in a source outside a building into cooling or heating required to keep interior temperature levels comfortable; the energy

demand for electricity or gas to run the heat pump is comparatively very low owing to the recent development of heat pump technology.

As was mentioned above, rural areas have relatively low energy consumption density. Thus, when using heat in such areas, it is important to fully study the use of waste heat from incineration plants while taking into consideration the heat demand volume(demand density) or wastewater treatment plants, which require connection with DHC or other heat-supply facilities, more difficult than in the CBD.

ii) Utilizing untapped energy in towns

In large cities and towns, garbage/sewage sludge incineration plants are often located near residential area, as are sewage pumping stations. These energy sources could be converted to energy supply for nearby buildings and houses, which would facilitate the cyclic use of energy at a regional level.

iii) Managing urban development to promote untapped energy use

An essential element of the effective use of untapped energy is to take all opportunities to link potential consumers with the energy source. Greenfield developments could intentionally site these waste treatment plants near urban areas with high energy load. In existing urban areas, road maintenance and other infrastructure improvements provide opportunity to establish the heat energy supply conduits.

Linking untapped energy to existing power networks is not easy due to limitations arising from power supply conditions in each economy. Promoting the effective use of untapped energy requires the ability to formulate introduction plans that are tied to commercial power network studies at a higher planning stage, such as in the formulation of master plans.

iv) Linking with improvements to urban thermal environment

In the central built-up areas of large cities, the "heat island" phenomenon is of serious concern, because of the volume of heat released into the atmosphere from rooftop cooling towers, traffic road and pedestrian pavements. In this case, solar radiation reaching a building's rooftop is converted into heat, which causes higher room temperatures and rising air-conditioning costs. Thus, applying high solar reflectance paint for roof surfaces prior to the conversion of solar radiation into heat is effective in controlling rising room temperatures and lowering air-conditioning energy requirements. The same measure is similarly effective for roads and sidewalks and the roofs of public transport vehicles (e.g., buses, trains, and trams).

Water bodies such as rivers can be effective absorbers of waste heat. This requires consultation with the administrators of the water body to make sure that it has sufficient flow to avoid the localized accumulation of heat in the waterway.

2.2.3 Use of renewable energy

i) Renewable energy sources

The energy that exists in nature and that can be used repeatedly is called renewable energy. It includes solar energy (PV, and solar heat usage), wind energy, biomass energy, and underground heat energy. Renewable energy is widely available but is also widely dispersed. To make such low-density energy effective for power and/or heat generation requires concentration and distribution through energy conversion facilities, such as, wood pellet manufacturing plants.

Rural areas have lower land use density compared to CBD's (making it easier for them to utilize large blocks of land) and can more easily access naturally occurring renewable energy from rivers, etc. Thus, introducing mega solar power generation, large-scale wind power generation, hydropower generation (small-scale hydropower), and other systems that take full advantage of such regional characteristics must be proactively considered in these areas. Here, medium- to long-term construction plans that take into account not only current energy efficiency but also efficiency improvements to be gained from future technical innovation should play an important role.

The introduction of heat pumps that utilize temperature differences in river water, oceans, lakes, and marshes (example: use of cooling water of heat sources) and heat from the ground—which have the potential to be rich sources of natural energy that are closely tied to local communities—should be studied. Moreover, possibilities for using geothermal power generation (and use of hot spring heat), power generation by ocean thermal energy conversion, snow-ice heat, and wave-power generation should be studied.)

The output of renewable energy (with the exceptions of geothermal and biomass sources) is influenced by the natural environment. Because of this, renewable energy presents the following problems: 1) inability to serve as a power supply for base-load that can provide stable output; 2) manifestation of load on the transmission system arising from fluctuating output; and 3) difficulty in adjusting the overall supply-demand balance.

Accordingly, additional measures will become necessary particularly when the share of renewable energy within the overall power source structure reaches a considerable level, for instance, making up for power generation instability by varying output of distributed power generation systems(co-generation), introducing DR(Demand Response) program, or building batteries with power plants and transmission systems. Such measures will include controlling output fluctuations caused by varying sunlight or wind conditions and shifting surplus power generated during the nighttime to peak daytime hours.

ii) Using renewable energy in towns

While solar energy and underground heat energy can be utilized regardless of the regional characteristics, there will be a higher potential for utilization in suburban areas or middle/small-sized local towns rather than in the central areas of large towns. While renewable energy that is used as electricity will be developed widely, the deployment of renewable energy as heat depends on the regional conditions about the heat requirement. In this sense, it is essential to foresee the future status of heat use and to formulate a strategy for use of heat in the future.

< Renewable Energy for Urban Application in the APEC Region>

The above report, which was commissioned by APEC EWG/EGNRET and published in January 2010, assessed best practices in renewable energy technologies, systems and resources in urban areas of APEC member economies. It includes examples in the residential, commercial, industrial and utility sectors. It is worthwhile to read as it will provide insights about the approach to utilize renewable energy in the urban area.

http://www.egnret.ewg.apec.org/reports/210 ewg urban application.pdf

iii) Managing town development to promote renewable energy use

The benefits of renewable energy such as solar and biomass are considered to be relatively high in the local towns where the building density in the built-up areas is relatively low. However, in these towns, there tend to be less opportunity such as district redevelopment and replacement of buildings, which could trigger the introduction of such renewable energy. Therefore, it will be necessary to capture the opportunities of refurbishment of government office buildings and hospitals etc. It will be also important to cooperate closely with town developers who have a plan of large scale development.

Linking untapped energy to existing power networks is not easy due to limitations arising from power supply conditions in each economy. Promoting the effective use of untapped energy requires the ability to formulate introduction plans that are tied to commercial power network studies at a higher planning stage, such as in the formulation of master plans.

iv) Linking biomass sources to town development

Low carbon town development near the agricultural, forestry, or livestock farming area has the advantage of biomass energy. Effective use of biomass energy will require consolidation of the widely dispersed waste materials, and establishment of a framework for the production of energy locally and use of energy locally.

Rural areas should be able to make effective use of such biomass as agricultural waste, fisheries waste, and forestry waste (e.g., timber from forest thinning, etc.) in the same way that food waste and urban waste resources generated in CBD are used.

2.3 Measures that straddle energy demand and supply

2.3.1 Smart grid systems

The smart grid system is a new concept of electricity transmission/distribution network that controls and optimizes the flow of electricity from both the demand and supply sides. These systems require the installation of a "smart meter" on the demand side.

Conventional electricity transmission is designed for peak demand, which results in electricity wastage. In addition, outdated and aging transmission/distribution lines are vulnerable to overload and natural disasters, and can be difficult to restore service on after an outage. Smart grid systems have been proposed as the next-generation transmission/distribution system that can maximize efficiency, while also facilitating the introduction of electricity from renewable sources.

As well as offering these low carbon benefits, it is noted that smart grid rely on advanced communication systems, which could be vulnerable to tampering or computer virus infection, and so need to be carefully safeguarded.

Smart grid systems are different from one economy to another, such as electricity market structure, or stability of power transmission/distribution network. Smart grid systems have following potential benefits:

- 1. Reduction of electricity consumption can be expected at demand side through measuring and visualizing the electricity consumption with the smart meter. It is also possible to shift peak demand by restraining the consumption at the time of peak electricity generation.
- Stability of electricity supply and prevention of blackouts will be improved by the safety-control equipments installed on the electricity transmission/distribution network. This reduces the social disturbances caused by blackouts, providing economic benefits for the whole society.
- 3. Electricity generated from solar and wind energy can be highly variable in volume, depending on the season or time of the day. If renewable power is connected to the power transmission/distribution network, it may turn out to be a voltage variation for the network. The smart grid systems avoid such a problem by matching the supply from the utilities with the demand of the consumers.
- 4. Under the smart grid systems, it is expected that surplus electricity generated by renewable energy can be controlled by temporarily storing and discharging the electricity using batteries connected to the grid. In future, it may be possible to adjust the demand-supply balance in the whole electricity network, making efficient use of the batteries mounted on "plug-in" type electric cars and hybrid vehicles stationed at households.

Overall, smart grid systems seek to reduce the wasteful electricity consumption on the consumer side and to promote the introduction of renewable energy on the supply side. In many towns and cities in the APEC member economies, smart grid system demonstration projects are under way, supporting innovation not only in the energy area but also in the wider town infrastructure, including buildings, traffic system design and management. The goals of these projects address the different socio-economic conditions of their respective economies and regions.

<APEC Smart Grid Initiative>

The APEC Smart Grid Initiative (ASGI), established in 2010 by APEC's Energy Working Group (EWG), evaluates the potential use of smart grids and grid management technologies, energy efficiency, renewable energy technologies, and intelligent controls to link customers to the grid and enhance the use of renewable energy and energy efficient buildings, appliances and equipment. The goal of the Initiative is to crate best practices in operation (through workshops and actual testing) as well as interoperability standards to create highly efficient systems that are easily replicable.

http://www.egnret.ewg.apec.org/meetings/egnret36/E3-APEC%20Smart%20Grid%20Initiativ

2.3.2 Smart energy system

Future energy systems will be "smart" at all levels. On the supply side, it is expected that town energy systems will combine large-scale integrated power generation from sources such as thermal, hydroelectric and nuclear, and a large number of CHP and small-scale renewable-energy power generation in individual households. On the demand side, there will be energy management systems in place at all levels: in homes, commercial and civic buildings and at area level.

Smart Energy System seeks to optimize the total energy use by coordinating all the energy management systems for a single district. It is also possible to optimize the total energy supply and consumption by combining not only electrical systems but also heat supply systems which use cogeneration and thermal storage equipments.

Another type of smart energy system in development aims to connect energy systems with water circulation systems by using water as a heat storage media and adjusting the operation of water treatment facilities to absorb variation in energy load.

Smart energy systems are likely to be a main approach to future low carbon town development, even if not immediately applicable to all current projects.

Smart energy systems are optimized networks that integrate heat, power, and other energy with ICT, They are expected to see more effective utilization through their application in CBD and other areas that have relatively high energy consumption density. When planning their use in rural areas, it is important to design smart energy systems, taking into consideration demand volume (demand density) for each energy type (power or heat).

2.3.3 Water treatment

1. What is Water Treatment?

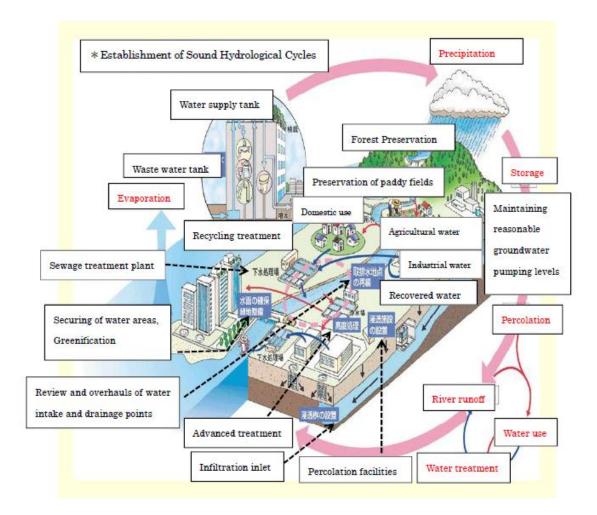
Water treatment in urban areas roughly plays two roles: water treatment for supplying water used in human activities and water treatment for collecting and treating waste water and rainwater to return them to the natural world.

1.1 Water Supply

A water supply is a system for supplying the required amounts of safe water according to the demand for it in an urban area. While water is used for daily life and in municipal, industrial, agricultural applications, water supply systems mainly supply daily life and municipal water. The essential requirements for water supply to play this role are the quantity, quality, and pressure of water, which are called the three requirements of a water supply.

1.2 Sewerage

Sewerage is a facility for collecting and treating wastewater to return it to the natural world. The water taken in as clean water is used in human activities. Then, it is collected as sewage, treated at sewage treatment plants, and returned to the hydrological cycles system through waterways.


2. Contribution of the Water Treatment to Low-carbon Town Plans

To ensure sustainable water usage, it is important to preserve reservoir areas as well as reproduce a sound hydrological cycles through low-carbon and cyclic use of water resources by, for example, reducing emissions of greenhouse effect gases and making effective use of the natural energy obtained from water resourced.

2.1 Contribution of Hydrological Cycles (Water Treatment) toward a Low-carbon Town

Basically, to contribute to low-carbon towns, measures will be taken, such as the use of potential and natural energy, development and incorporation of energy saving technologies, and efficient operation of facilities and systems. In addition, measures for avoiding waste, including measures against leakage and water saving, are effective.

Figure 12: Conceptual Rendering of the Construction of an Establishment of sound Hydrological Cycles

(Source) Drawn by Water and Disaster Management Bureau, Ministry of Land, Infrastructure, Transport and Tourism

(1) Water Supply Infrastructure Based on Gravity

When a new facility is set up or an existing facility is upgraded, upstream intake will be introduced (or a shift to it will be made) to construct a gravity-flow water distribution system using gravity based on potential energy. (The ultimate low carbon implementation is to obtain potable row water to supply water based on gravity flows.)

Considerations:

- ✓ In arranging water intake in the most appropriate upstream area, the current regionalization may have a limit to the effective use of water resources. It is important to select intake points across a broader range.
- \checkmark Water quantity and quality must be taken into account in selecting intake areas.
- ✓ Because upsized and integrated facilities due to wider areas present safety problems under emergency conditions, it is essential to ensure sufficient safety in considering the scales and locations of these systems (balance between the centralization and decentralization)

(2) Use of small-scale hydroelectric power generation based on a low flow rate and/or small drops at rivers and water supply and sewerage

Considerations

✓ It is not possible to recover the costs of small-scale hydroelectric power equipment. Not a few people question the effectiveness of it considering the time and efforts required by the manufacturing of the equipment.

Considerations associated with sewerage capabilities and wastewater treatment systems

(3) Biogasification and conversion of sludge to fuel based on sewage sludge Considerations

- ✓ Depending on the life environment and sewage piping, sewage sludge includes only a small amount of organic substances (energy). In this case, gasification or conversion fuel may not generate sufficient energy.
- ✓ In some areas where agriculture is dominant, composting may be the most effective means rather than gasification and conversion to fuel.
- ✓ It is necessary to consider to treat sludge from household and industry together to reduce greenhouse gases in treating sewage sludge and reuse of energy.

(4) Use of treated sewage effluent

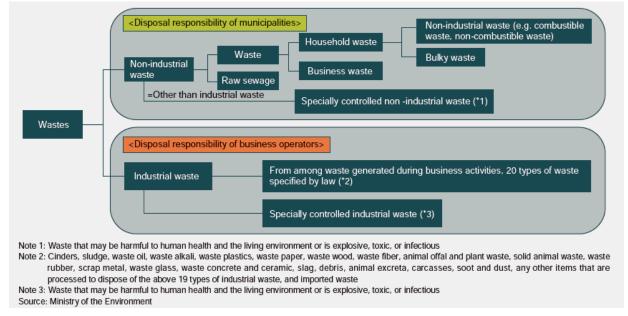
Treated sewage effluent can be used as agricultural, industrial, and environmental water, for example.

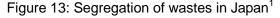
Considerations:

✓ The use of treated sewage effluent has problems in terms of water quality/safety and energy saving.

(5) Use of space of water supply and sewerage facilities

Space of facilities is used to make use of renewable energy including photovoltaic power generation.


(6) Use of gray water in commercial buildings and other facilities


Relatively clean water used in buildings is treated so that it can be reused as gray water for rest rooms (the use of rainwater and reuse of miscellaneous drainage are evaluation targets of CASBEE).

2.3.4 Solid waste Management

1. What is Waste?

Waste is defined as unwanted materials or items which are no longer used personally or which are not delivered for value, and such materials or items can be described as, for example, garbage, bulky waste, burnt residue, polluted mud, feculence such as night soil and waste, either in solid or liquid form. In Japan, it is classified as shown in Figure 13 in accordance with the Waste Disposal and Public Cleansing Act.

(Source) Ministry of Environment, Japan

When developing a town, it is important to map out a town plan considering what measures should be taken to treat waste (non-industrial waste classified as waste generated in business operations or household waste), which will increase in pace with the expansion of the population.

¹Each economy uses different terms or definitions for waste classification (e.g. categorize industrial waste into "Hazardous industrial waste" and "Non-hazardous industrial waste").

2. Realization of a Low Carbon Town by the Promotion of the 3R Activities

We need to reduce the environmental load from waste treatment as a whole. Reducing the volume of discharged waste by means of the 3R activities (Reduce, Reuse, and Recycling) and choosing appropriate methods of waste treatment are two important elements of the reduction of greenhouse gas emissions from waste treatment.

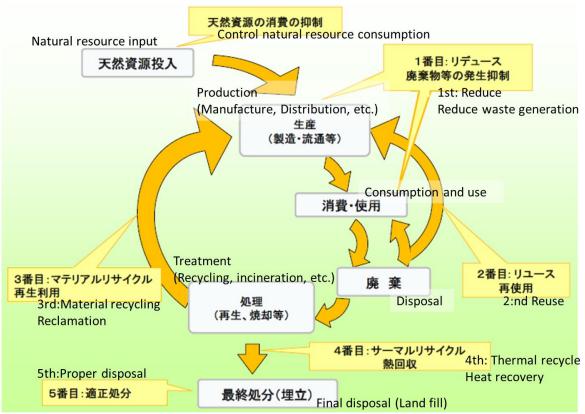


Figure 14: 3Rs and recycling-oriented society

(Source) Ministry of Environment, Japan

A conceptual diagram of 3Rs and recycling-oriented society is shown in Figure 14. A recycling-oriented society is a society where the consumption of natural resources is controlled and the environmental load is reduced to the maximum extent possible. It can be realized by ensuring the reduction of a chance where products become waste, the proper use of generated waste as resources in the second place, and the appropriate disposal of what cannot be reused in the last place. To realize a recycling-oriented society, the 3Rs need to be promoted

To establish a recycling-oriented society through the promotion of the 3Rs in Asian nations, the Regional 3R Forum in Asia was established in November 2009 based on a proposal by Japan. The

aims of the activities are to promote high-level political dialog regarding the 3Rs and the implementation of 3R-related projects in each nation, share institutional and technological information that may be helpful for 3R promotion, and establish a network of parties concerned.

3. Concreate Efforts to Realize Recycling-Oriented Society and a Low-Carbon Town

By promoting the 3Rs of waste, the volume of waste incineration² and direct landfilling is reduced. At the same time, power generation and utilization of the heat exhausted from the incineration of waste and the use of biomass energy is promoted in Japan to reduce the consumption of fossil resources. It is executed by means of subsidies from the government for the facilities of waste to energy and the ones where methane is collected from organic waste at high efficiency.³

3.1 Example: Waste to energy

Waste to energy is a generic name for the electricity generation using energy from waste. In many cases, it is specifically used for the system where steam is produced in a boiler using high-temperature combustion gas generated from the incineration of waste, and the turbine of a power generator is rotated by the steam to generate electricity⁴. In a broad sense, waste to energy concept also includes landfill gas utilization, which is commercially used in the U.S. and other economies. For example, methane gas retrieved from organic wastes in landfill can be utilized in the power generating process.

Strengths of waste to energy⁴

- i. Fossil fuel consumption and CO₂ generation are reduced, as it uses the energy generated by waste incineration.
- ii. Electricity supply is more stable than other new energies.
- iii. The facility is located in or near a city and therefore it is a distributed power supply directly connected to the area of demand, though the scale is small.

Weaknesses of waste to energy⁴

- i. The temperature of the steam in a boiler must be kept lower than an ordinary thermal power plant. Therefore, the power generation efficiency is low.
- ii. The power generation efficiency of small-scale facilities (under 100 ton/d) is even lower. The effect of the introduction of waste to energy is undermined.
- iii. Long-term storage and stable combustion are more difficult than such fuels as natural gas and coal.

²It is important to control dioxin in incineration process both in exhaust gas and ash residual.

³MOE: "Annual Report on the Environment, the Sound Material-Cycle Society and the Biodiversity in Japan", 2014

⁴Y.Suzuki: "Current Situation and Issues of Waste Power Generation", *Reference*, May 2014 (in Japanese)

3.2 Example: Utilization of Waste Biomass⁵

Direct landfill of waste biomass including woodchips on a final disposal site must be stopped at the earliest opportunity because it produces methane gas that has a high global warming effect. It is necessary to recycle such resources in a way suitable for the characteristics of the region. Waste biomass is an organic resource derived from an animal or plant, from which fossil resources are excluded. There are a variety of types; waste such as livestock excrement, sewage sludge, and kitchen waste; non-edible parts of farm products such as rice straw; unused resources such as timber from forest thinning; resource crops such as sorghum; and algae. To make the waste biomass useful in our daily lives, technologies to convert it into heat, gas, fuel or chemical substances are necessary. The types of the technologies vary from such simple ones as direct combustion to sophisticated ones such as saccharification, fermentation, gasification, and re-synthesis. Their attained levels are also varied from a basic research phase to the subsequent validation phase and practical application phase.

⁵MAFF: "Biomass Commercialization Strategy", 2012, (in Japanese)

2.4 Greenery

- 2.4.1 The effect of greenery
- 1) The heat island phenomenon

Greenery is an effective way to create eco-friendly urban environments, absorb CO2 and mitigate the heat island phenomenon (see chapter [x] for a description of CO2 absorption).

The heat island effect is found mainly in urban areas where urban surfaces such as concrete and asphalt pavements, and building surfaces replace permeable moist open land and vegetation. The urban surfaces store heat from the sun or heat exhaust from buildings and vehicles, causing a 1-3 degree difference for urban heat islands compared with surrounding areas.

Urban air temperature has dramatically increased over the past 100 years compared with non-urban global levels. In Japan, the mean air temperature in Tokyo has increased by over 2.0 degrees, comparatively the average temperature increase for the whole of Japan is around 0.7 degrees.

Urban air temperature has increased continuously alongside global warming. This has especially been the case for Asian urban cities, which have rapidly urbanized in recent years. The heat island phenomenon also creates micro-climates. This has the potential to create secondary problems such as increased energy use from use of air conditioning in buildings, ecosystems degradation and new pathogens from increased temperatures.

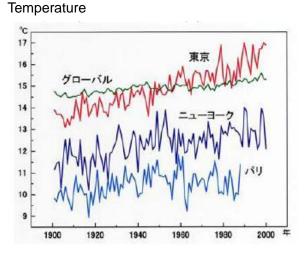
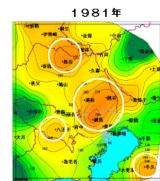
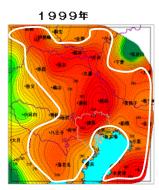




Figure 15 Increase of Annual Mean

Figure 16 Spread of Heat Island area in Tokyo metropolitan(from 1891 to 1999)

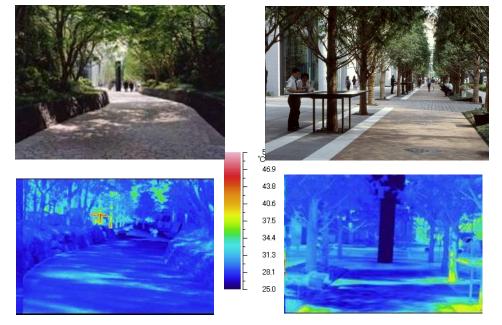


Figure 17 Distribution of Surface Temperature around greenery planning area(12:00, August, Tokyo)

Figure 18 Mitigation effect of air temperature by greenery area (12:00, September, Tokyo, 2005)

2) How to mitigate the heat island phenomenon with greenery (Improving urban surfaces) Greenery is an excellent way to control thermal environments. Tree leaves can help to decrease air temperature by around 1.0 degree due to evaporation occurring on the surface of leaves. It is important to enhance greenery in developed areas by promoting green building practices such as adopting green roofs and walls.

The type of greenery used is also important as tall trees with big crowns are not only more effective at mitigating air temperatures around the crown, but also work to decrease the surface temperature

of the ground surface under and around the trees.

2.4.2. Greenery as a carbon absorption measure

Additionally, greenery works as a useful carbon absorption mechanism, which can contribute to establishing a LCMT by counteracting, in part, the impact of deforestation on CO2 absorption rates by forests. Forests are carbon absorption sites in suburban and rural areas. Hence, increasing tall tree planting in urban areas is a comprehensive low carbon measure for a LCMT.

The strength of carbon absorption would be comparatively ranked as follows;

Tall tree (Ex : zelkova, around 10 - 20 years) > Mid and low tree > turf (ground surface green)

Chapter 3 Evaluating the effect of low carbon measures

3.1 Purpose of evaluating the CO₂ reducing effects

Estimates of the reduction in CO_2 emissions from various measures, and combinations of measures will make it possible to quantify the effectiveness of a planned approach to low carbon town development. This also makes it possible to compare the predicted reductions with the designated CO_2 reduction target for the town, which provides a check on the practicality of the target itself.

A hierarchy approach is recommended for the review approach. This uses the emissions level in a business-as-usual (BAU) scenario as the basis, and assesses the increase in emission reduction in a hierarchical fashion as shown in Figure 19.

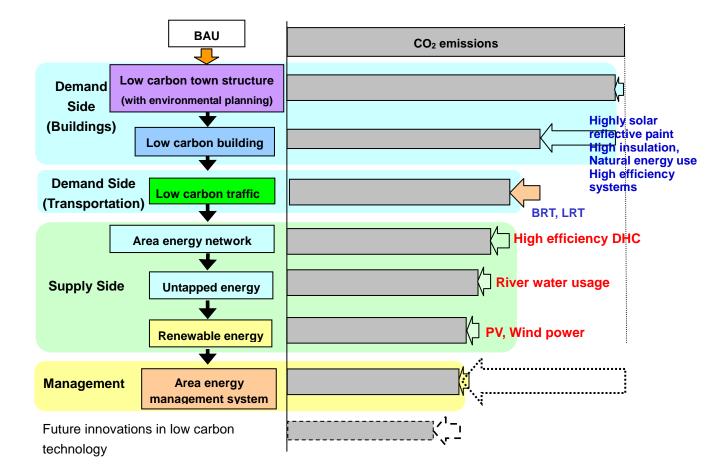


Figure 19 Hierarchy approach for assessing effectiveness of low carbon measures

3.2 Basic methodology to evaluate CO₂ reducing effects

Basic methodologies for evaluating the CO₂ reducing effects of the different measures are shown below.

3.2.1 Demand Side

i) Low carbon town structures (Transit Oriented Development (TOD) type land use)

Low-carbon town structures are being discussed in terms of intensive town development and TOD-type development in CBDs, etc., and thus it is difficult to envision application of intensive town structures for rural and resort areas. Consequently, the need to study such structures should be determined based on the existence of intensive development or TOD-type development.

TOD has two key CO₂ reducing effects:

- Reduced energy use in buildings through their concentration in high density zones
- Reduced motor traffic

The two methods used to evaluate the effects of TOD type land use are set out separately below.

ii) Low carbon buildings

General procedure for evaluation

 CO_2 emission from the building sector can be calculated by multiplying "total floor area of buildings by use", " CO_2 emission intensity of buildings by use " and "(1- Overall CO_2 reduction rate)", as shown in the formula below.

 CO_2 Emission= (Total floor area of buildings by use) × (CO_2 emission intensity of buildings by use) × (1- Overall CO_2 reduction rate)

Data

a) Total floor area of buildings

The "floor area of buildings by use" figure is estimated based on the development plan of the area in question.

b) CO₂ emission intensity of buildings by use

Method 1: If statistical data on the energy consumption of the buildings by use is available for the area in the development plan, a figure for CO_2 emission intensity data can be obtained by conversion of

such data.

Method 2: If that data is not available, but data for other cities of a similar nature is accessible, this can be used to estimate a figure for the CO_2 emission intensity.

Method 3: If that data is not available from the development zone or similar cities, an alternative can be to gather data via a survey of energy consumption of buildings in the town in question. The survey will have the greatest value if it documents seasonal differences in energy consumption and type of fuel use.

Estimation of the CO₂ emission reduction effect of each measure

The overall CO₂ emission reduction rate can be calculated by following these steps:

1. Evaluate separately the CO_2 emission reduction effect at energy consumption points in the building, such as heat source equipments, heat transfer, lighting, electric apparatus, hot water supply system.

2. Estimate the aggregated value by prorating these figures.

Heat source equipments are those that generate cold or hot energy, such as turbo or absorption type refrigerators and heat pump chillers, as shown in the schematic diagram of the district cooling/heating system in Appendix 3. The efficiency of this technology, especially of heat pumps, has been improving year after year. Replacing outmoded equipment with high efficiency models is an effective way of reducing CO_2 emissions.

Heat transfer equipment includes cold/hot water pumps and air conditioning fans. Effective energy savings can be achieved through adjusting the number of these equipments in operation, and by using an inverter system to control their use according to actual demand.

In terms of lighting, energy savings can be achieved by adopting high-efficiency fluorescent lamps (Hf-type lamps), LED, organic EL lighting, illumination control using light sensors and motion sensors.

Reducing of the amount of electricity used for lighting and office appliances will result in the reduced internal heat, which also contribute to a reduction in electricity consumption for cooling purposes.

The reduction in CO_2 emission from the adoption of area energy network, such as district cooling/heating (DHC) can be estimated in a similar way.

iii) Low carbon transportation

General procedure for evaluation

CO₂ emissions in the transportation sector can be calculated by the multiplication of "traffic volume", "distance traveled", and "emission intensity" (equation shown as below). These figures need to be

obtained in order to calculate the reduction effect of low carbon transportation measures. As an example, a procedure for automobile traffic is set out below. For the other transportation modes (ships, boats, aircrafts etc.), basic concept and the procedure of evaluation is the same, but more detailed data that is specific for the transportation mode is required.

 CO_2 emission = Traffic volume × Distance traveled × Emission intensity

a) Traffic volume

If an automobile traffic census has been conducted in the targeted district, this should be used to determine traffic volume. An automobile traffic census counts the number of vehicles passing a particular point of each district, by type of vehicles, by time of the day and by direction. This is then used to calculate traffic volume of each target district covered by the census, per day and per year.

Person-trip surveys can also be used to calculate traffic volume. A person-trip survey investigates "when", "what type of people" moved, "from where", "to where", "by what means of transportation", and "for what purpose" in a given district in one day. The survey, which studies the actual travel behavior of the people living in the cities, is a valuable source of information for traffic planning.

A "trip" is a unit for the movement of a person from one point to another for some purpose; the total of the number of trips that started from a certain district (traffic generation) and the number of trips that ended in the district (traffic concentration) is called the "generation concentration volume" of the district.

While the modes of transportation covered by these surveys include railroads, buses, automobiles, two-wheeled vehicles (bicycles, motorized bicycles), walking, it is possible to estimate the automobile traffic volume in a given district by calculating the generation concentration volume by the percentage use of automobiles. Person-trip survey data will provide automobile traffic volumes by type of vehicles and by routes.

b) Distance traveled

If an origin/destination survey (OD survey) has already been conducted in the targeted district, this should be used to determine the travel distance of automobiles. An OD survey investigates the movement of the cars in one day, regarding information such as the point of departure and destination, purpose of the trip and time of travel. This is carried out by selecting a certain number of car owners from a car registry, who are then surveyed by questionnaire. The OD survey data will provide figures for distance traveled by type of vehicle.

If a person-trip survey was used to calculate traffic volume, the distance traveled should be calculated as the distance of each route.

c) Emission intensity

If statistical data on the fuel consumption and distance traveled by type of vehicle is available, the CO_2 emission intensity should be determined from these data. The CO_2 emission intensity should be settled separately by the type of vehicle, and the type of fuel used by the vehicle.

Calculation of the CO₂ emission reduction effect of each measure

a) Effects attributable to the upgrading of the public transit network

In principle, the effects can be estimated by assuming the reduction of traffic volume and distance traveled, that will be achieved through upgrading of the public transit network.

b) Effects attributable to the introduction of low-carbon vehicles

In principle, the effects can be estimated by assuming the number of low carbon vehicles that will replace conventional vehicles and their emission intensity.

c) Effects attributable to the introduction of other measures (such as traffic demand management)

In principle, the effects can be estimated by assuming the change in traffic volume, distance traveled and emission intensity accordingly.

3.2.2 Supply Side

a) Effects attributable to the introduction of area energy networks

The effects can be estimated by assuming the increase in efficiency at the central plants that supply heat energy used for cooling, heating, hot-water supply and other purposes in the district.

b) Effects attributable to the introduction of untapped energy/renewable energy

Heat: The CO₂ emission reduction effect can be calculated by assuming the amount of fuel necessary to generate the same amount of heat produced by untapped energy/renewable energy

Electricity: The CO₂ emission reduction effect can be calculated by reducing the electricity supply from the commercial grid, which is equivalent to the electricity generated by solar photovoltaic etc.

3.2.3 Demand and Supply Side

The CO_2 reduction effects can be estimated separately for different types of benefits, such as energy efficiency increase in building sector, or increase of renewable energy power generation.

Chapter 4 Summary of Part II

Low carbon town development requires clearly specified carbon reduction targets, and the careful selection of measures to achieve those targets, chosen as the best match to the town's individual situation.

"The Concept of the Low Carbon Town in the APEC Region – Part II" sets out the range of measures available. These are organized by category, and overall by whether they affect energy demand or energy supply. The Concept also sets out key points for effective implementation of these measures, and methods of quantifying their effects on carbon use.

Transit oriented development (TOD) is one of the key elements of low carbon town design. TOD land use planning combines intensive land use and public transit systems with other non-car transport forms, to reduce energy use and traffic volumes. Control of land use and enforcement of relevant policies are the crucial factors in successful implementation of TOD.

On the individual building level, there are opportunities in design and construction, and in retrofitting, to improve energy efficiency to reduce CO_2 emission. The potential measures include use of thermal insulation on windows and roofs, passive energy design, and high efficiency technology for air-conditioning and lighting. The integration of that technology with consolidated energy management systems is essential for effective reduction in carbon use. Models of innovative low carbon buildings are available in many APEC member economies.

Some of the most pressing issues facing large cities in the APEC region are air pollution and traffic congestion. Measures to reduce traffic volumes and emission levels offer significant benefits in energy use and also in traffic management. As well as TOD land use plan, other key options in this area are upgrading public transportation, traffic demand management and introduction of next generation low emission vehicles. The most effective set of measures for any given low carbon town development is the combination that has the greatest overall synergic effect.

As well as improving overall management of energy use and supply to increase efficiency, new low carbon town developments can also incorporate untapped energy sources, such as heat from garbage incineration plants. When such heat energy is supplied to large-scale co-generation plants, significant improvements in energy efficiency are possible at regional level. River water and sewage treatment water can also improve energy efficiency if used as a heat source or heat sink via high efficiency heat pump technology.

Data is the key to effective choice, implementation and monitoring of low carbon measures. However, good quality transport data is in short supply in most Asian developing economies. Statistics that would be of real assistance include figures for traffic volume, the distance vehicles are driven in a year, and fuel consumption by vehicle type. At the state or metropolitan level, occasional travel surveys and traffic counts are made, but there is little reliable data on fuel consumption and almost no data on vehicle use.

For the development of low carbon towns in APEC economies, transport data collection will need to improve markedly.

The Concept of the Low-Carbon Town in the APEC Region

Appendices and Index

Fourth Edition

November 2014

Appendix 1

Low Carbon Target for APEC economies

Economy	Emission reduction in 2010	Base
		year
Australia	-5% up to -15% or -25%	2000
	Australia will reduce its greenhouse gas emissions by 25% on 2000 levels by 2020 if the	
	world agrees to an ambitious global deal capable of stabilizing levels of greenhouse	
	gases in the atmosphere at 450 ppm CO_2 -eq or lower. Australia will unconditionally	
	reduce our emissions by 5% below 2000 levels by 2020, and by up to 15% by 2020 if	
	there is a global agreement which falls short of securing atmospheric stabilization at 450	
	ppm CO2-eq and under which major developing economies commit to substantially	
	restrain emissions and advanced economies take on commitments comparable to	
	Australia's.	
Brunei	Pledges to contribute to the 25% regional improvement in energy intensity by 2030	2005
Darussalam	compared to 2005 levels, as agreed by APEC Leaders in the 2007 Sydney Declaration	
Canada	17%, to be aligned with the final economy-wide emissions target of the United States in	2005
	enacted legislation	
Chile	Take nationally appropriate mitigation actions to achieve a 20% deviation below the	2007
	"Business-as-Usual" (BAU) emissions growth trajectory by 2020, as projected from year	
	2007. To accomplish this objective Chile will need a relevant level of international	
	support.	
China	Endeavor to lower its carbon dioxide emissions per unit of GDP by 40-45% by 2020	2005
	compared to the 2005 level, increase the share of non-fossil fuels in primary energy	
	consumption to around 15% by 2020 and increase forest coverage by 40 million	
	hectares and forest stock volume by 1.3 billion cubic meters by 2020 from the 2005	
	levels.	
Hong Kong,	Pledges to reduce energy intensity of GDP by 25% by 2030 relative to 2005 levels, and	2005
China	to reduce electricity consumption in government buildings by 5% by 2013-14 relative to	
	2007-2008 levels.	
Indonesia	-26%	
	The reduction will be achieved, inter alia, through the following action: (1)Sustainable	
	peat land management, (2)Reduction in rate of deforestation and land degradation,	
	(3)Development of carbon sequestration projects in forestry and agriculture,	
	(4)Promotion of energy efficiency, (5)Development of alternative and renewable energy	
	sources, (6)Reduction in solid and liquid waste, (7)shifting to low-emission transportation	
	mode	
Japan	25% reduction, which is premised on the establishment of a fair and effective	1990

	international framework in which all major economies participate and on agreement by those economies on ambitious targets.	
Korea	To reduce national greenhouse gas emissions by 30% from the business-as-usual emissions by 2020.	
Malaysia	 Pledges to reduce carbon dioxide emissions per unit of GDP in 2020 by up to 40% relative to 2005 levels contingent on the provision of international finance. Now in the process of instituting a renewable energy law and one of the mechanisms of the law are feed-in tariffs to promote the use of renewable energy. Malaysia also plans to include nuclear energy in the electricity generation fuel mix after 2020. 	2005
Mexico	Reduce its GHG emissions up to 30% with respect to the business as usual scenario by 2020, provided the provision of adequate financial and technological support from developed countries as part of a global agreement	
New Zealand	 New Zealand is prepared to take on a responsibility target for greenhouse gas emissions reductions of between 10 per cent and 20 per cent below 1990 levels by 2020, if there is a comprehensive global agreement. This means: the global agreement sets the world on a pathway to limit temperature rise to not more than 2° C; developed countries make comparable efforts to those of New Zealand; 	1990
	 advanced and major emitting developing countries take action fully commensurate with their respective capabilities; there is an effective set of rules for land use, land-use change and forestry (LULUCF); and there is full recourse to a broad and efficient international carbon market. 	
Papua New		
Guinea	Pledges to reduce greenhouse gas emissions by at least 50% by 2030 (75% is technically possible subject to enabling finance) while becoming carbon neutral before 2050, contingent on international support.	
Peru	-By 2021, net deforestation of primary or natural forest to be reduced at 0% -At the end of 2020, total energy demand will represent, at least, 33% of share from renewable energies(non-conventional energies, hydro and bio-fuels -Design and implementation of measures to reduce emissions by inappropriate management of solid wastes	
The Philippines	Sets the goal of improving energy utilization through the National Energy Efficiency and Conservation Program (NEECP) launched in August 2004. This program will save a cumulative 9.08 million barrels of fuel oil equivalent during the period 2007-2014 compared with business-as-usual. Sector energy efficiency goals are to reduce final energy demand by 10% (the Philippine Energy Plan 2009-2030) in each sector: industry, residential, commercial, transport, and agriculture.	
The Russian Federation	 15-25 % the range of the GHG emission reductions will depend on the following conditions: Appropriate accounting of the potential of Russia's forestry in frame of contribution in meeting the obligations of the anthropogenic emissions reduction; Undertaking by all major emitters the legally binding obligations to reduce anthropogenic GHG emissions. 	1990

Singapore	Mitigation measures leading to a reduction of greenhouse gas emissions by 16% (footnote	
	1) below Business-as-Usual (BAU) levels in 2020, contingent on a legally binding global	
	agreement in which all countries implement their commitments in good faith(footnote 2).	
	(Footnote 1) Although a legally binding agreement has yet to be achieved, Singapore will	
	nonetheless begin to implement the mitigation and energy efficiency measures announced under	
	the Sustainable Singapore Blue print in April 2009. These measures are an integral part of the	
	measures to achieve a 16% reduction below BAU referred to in (1). When a legally binding global	
	agreement on climate change is reached, Singapore will implement additional measures to achieve	
	the full 16% reduction below BAU in 2020.	
	(Footnote 2) The clarifications set out in Singapore's Letter dated 28 January 2010 apply to paragraph (1).	
Chinese	Pledges to reduce economy-wide CO ₂ emissions to the 2008 level during the period	
Taipei	2016-2020, and then further reduce emissions to the 2000 level by 2025 (uncontingent).	
lapoi	The main measures to achieve this goal are to develop carbon-free renewable energy, to	
	increase the utilization of low carbon natural gas, and to promote energy conservation	
	schemes in various sectors.	
	Chinese Taipei has overall energy efficiency goals to reduce energy intensity by 20% by	
	2015 and by 50% by 2025 compared with 2005. All sectors have specific energy	
	efficiency goals, such as: reducing the CO_2 intensity of industry by 30% by 2025, raising	
	new car energy efficiency standards 25% by 2015, improving the energy efficiency of	
	appliances and devices by 10% to 70% by 2011, and a 7% reduction of government	
	energy use by 2015. Energy efficiency improvement goals in all sectors are compared to	
	2008 levels.	
Thailand	Pledges to reduce energy intensity by 8% by 2015 and 25% by 2030 compared with	2005
	2005. To reduce greenhouse gas emissions, Thailand will also increase the use of	
	renewable energy and nuclear power.	
United	In the range of 17%, in conformity with anticipated U.S. energy and climate legislation,	2005
States	recognizing that the final target will be reported to the Secretariat in light of enacted	
	legislation.	
	¹ The pathway set forth in pending legislation would entail a 30% reduction in 2025 and a	
	42% reduction in 2030, in line with the goal to reduce emissions 83% by 2050.	
Viet Nam	Pledges to reduce total energy consumption by 3% to 5% by 2010 and by 5% to 8% by	2006
	2015 compared with 2006. The government has also approved the following targets for	
	renewable energy and the development of nuclear power plants:	
	a) achieve a 3% share of renewable energy in total commercial primary energy by 2010,	
	5% by 2025 and 11% by 2050	
	b) introduction of first nuclear power plant by 2020 will contribute energy structure	
(Source) L	IN FCCC (http://unfccc.int/meeting/cop/_15/copenhagen_accord/items/5264.php) and	

(http://unfccc.int/meeting/cop/_15/copenhagen_accord/items/5265.php),

"Pathways to Energy Sustainability: Measuring APEC Progress in Promoting Economic Growth, Energy Security, and Environmental Protection", pp.86-91, APERC, 2010(Brunei Darussalam, Hong Kong, China, Malaysia, the Philippines, Chinese Taipei, Thailand and Viet Nam).

Appendix 2

Low Carbon Measures and their Applicability

	Classification of Me	asures			olicat	as		
Supply / demand	Major Classification	Minor Classification	Low Carbon Measure		Type vn ^{No}		-	Case
uemanu	Classification	Classification		I	Ш	III	IV	No.
Supply	Generating /	Infrastructures for	Distributed power facility	М	М	L	L	
side	distributing power	generating/ storing	Cogeneration system	Н	Н	L	L	(1)
		power	Large-scale power storage, etc.	М	М	L	L	
	District energy (heat supply)	District heating / coo	ling		н	М	L	(3)
	Untapped energy	Using sea/river/sewage water			Н	М	L	(2)
		Using waste heat from as waste incineration plants			н	М	М	(12)
		Using waste heat fro	m sewage treatment plants		Η	М	L	(10)
		Using waste heat fro	m factories	М	М	М	Х	
	Renewable energy	Solar power gener generation)	М	М	М	М	(13)	
		Using solar heat (lar	ge-scale solar heat)	М	М	М	М	(14)
		Biomass power ge generation, etc.)	eneration (bio gas power		L	L	М	(16) (25)
		Wind power generati	on		L	L	Η	(17)
		Geo-thermal power generation			L	L	М	(15)
		Hydroelectric powe middle-scale)	r generation (small- and		L	L	М	(11)

Note 1): H:Potentially highly effective M:Potentially effective

L:Potentially less effective or difficult to apply X:Not effective at all or unlikely to apply

	Classification of Me	asures		Арр	olicat	oility a	as		
Supply /	Major	Minor	Low Carbon Measure		Туре			Case	
demand	Classification	Classification			own ^{Note 1)}				
					II	III	IV	No.	
Demand	Composition of	Transit Oriented Dev	elopment(TOD)						
side	urban space	Environment space	Green way Net Work	Η	Η	Η	Μ		
		development	Underground space NW	Μ	L	Х	Х		
	Buildings	Reducing heat	Reflection of solar energy and					(4)	
		loads	heat insulation, high solar	Η	Н	Η	Η	(4) (5)(30)	
			reflectance paint for roof					(3)(30)	
		Highly efficient		тт	тт	тт	тт	(0)	
		facility systems		Η	Η	Η	Η	(9)	
		Equipment installed	Fuel cells, etc.	тт	тт	ъл	Ъл		
		at facilities		Η	Η	Μ	Μ		
		Passive energy	day light use, natural					(6)(7)	
		design & equipment	ventilation,					(8)	
	Management	Energy	BEMS *(HEMS, FEMS)	Η	Η	Η	Н		
		management	Zero Energy	М	ъл	тт	тт		
		systems(EMS)*	Building(ZEB)		Μ	Η	Η		
			Area EMS	Н	тт	тт	тт	(26)	
					Η	Η	Η	(27)	
	Environment-related	Urban climate	Micro climate, heat island	Η	Μ	М	Х		
	infrastructures	Wastes	Collecting wastes,	тт	тт	тт	тт		
			recycling resources	Η	Η	Η	Η		
			Using energy (bio gas),	ъл	ъл	т	тт		
			using sewage sludge	Μ	Μ	\mathbf{L}	Η		
		Water supply /	Re-using treated waste						
		sewage	water	Η	Н	М	L		
			Using rainwater						
		Reducing pollutions	Treating exhausts,						
			contaminated soils	Н	I H	Н	Н		
			(Treating waste water is	п	п	п			
			included in the sewage.)						

Note 1): H:Potentially highly effective M:Potentially effective

L:Potentially less effective or difficult to apply X:Not effective at all or unlikely to apply

*EMS=Energy Management System

BEMS=Business Energy Management System

HEMS=Home Energy Management System

FEMS=Factory Energy Management System

	Classification of Me	easures		Арр	olicat	oility a	as	
Supply /	Major	Minor	Minor Low Carbon Measure per Type of Town Note 1)				Case	
demand	Classification	Classification		Ι	II	III	IV	No.
Demand	Transportation	Public	Public transportation NW	Μ	Μ	Μ	Х	(19)
Side	Side system transportation systems		Intra-district transportation system (busses, LRT, etc.)	Н	Н	Н	L	(20)
		Short-distance transportation	Intra-city community bicycle	Η	Η	Н	L	(23)
		systems	Short-distance transportation system	Η	Η	Η	L	
		Vehicles	Electric Vehicle(EV)	М	М	М	М	(21) (29)
			EV bus	Μ	Μ	Μ	Μ	(22)
			Natural gas-driven vehicles, etc.	М	М	М	М	
		EV-related hardware	Fast charger, small battery	М	М	М	М	
Both supply and	Smart grid system (mainly for electric	Power control systems	Power monitoring control system	Н	Η	М	L	
demand sides	power system)		Power stabilization system	Н	Η	М	L	
			Other systems					
		Network	Network infrastructures	Η	Η	Μ	L	(28)
			Network-related technology, communication modules, measuring systems, etc.	Н	Н	Μ	L	
	Smart energy system (energy integration)		Smart energy system	Н	Н	М	L	(24)

Note 1): H:Potentially highly effective M:Potentially effective

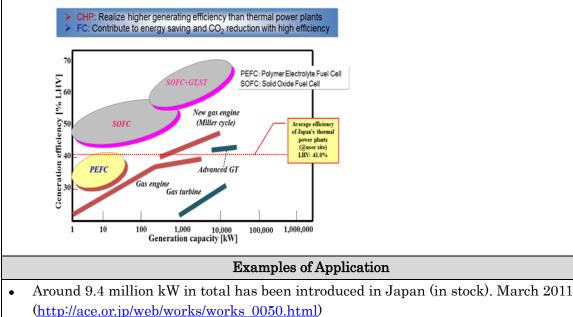
L:Potentially less effective or difficult to apply X:Not effective at all or unlikely to apply

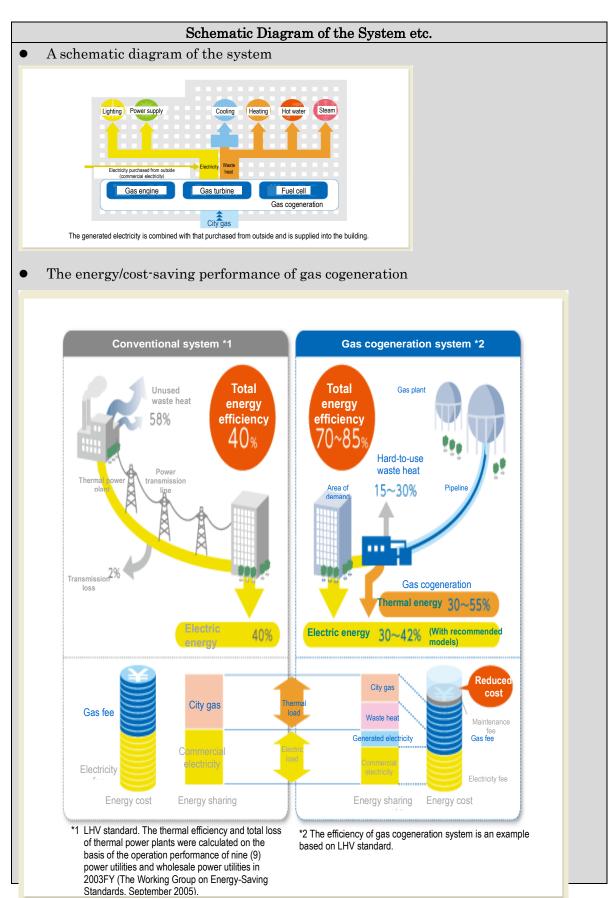
*EMS=Energy Management System BEMS=Business Energy Management System HEMS=Home Energy Management System FEMS=Factory Energy Management System Appendix 3

Low Carbon Measures with Case Examples

(1) Cogeneration System

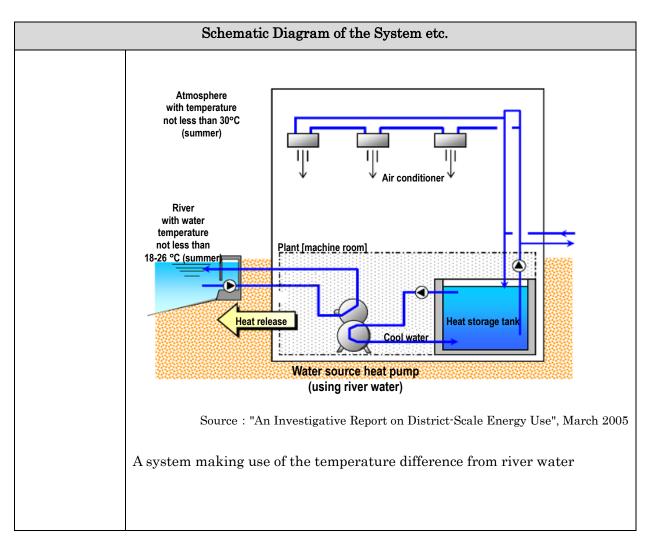
Classificat	Classification of Measures		Low Carbon Measure	Applicability as per Type of Town					
Supply/	Major	Minor		Ι	П	III	IV		
Demand	Classification	Classification							
Supply side	Generating/	Infrastructures	Cogeneration	Н	Н	\mathbf{L}	\mathbf{L}		
	distributing	for generating/	System(CHP)						
	power	storing Power							
		Overview of M	leasures and Ap	plicabili	ty				

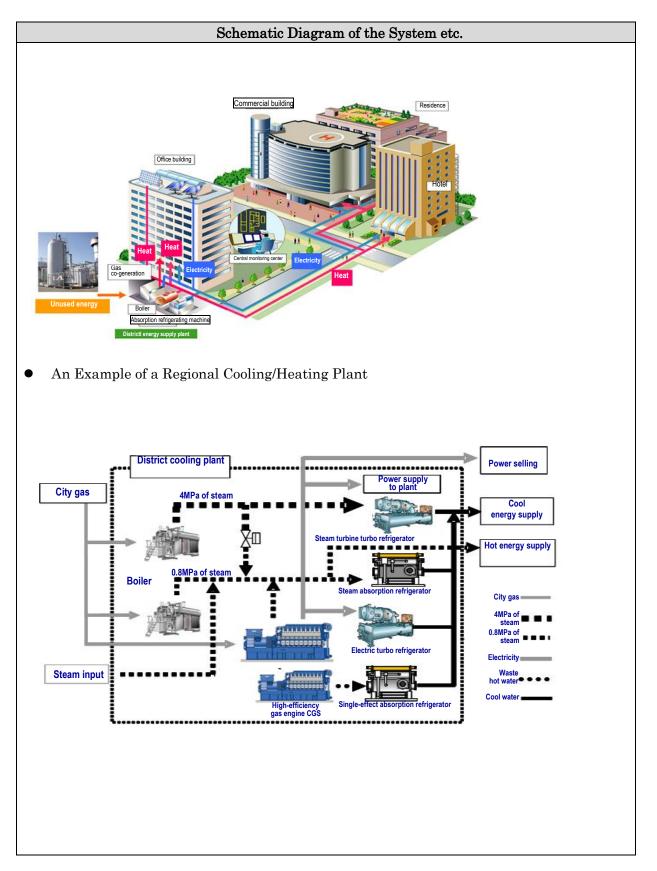

• Cogeneration is a system that generates electricity where needed using city gas for fuel, and at the same time makes efficient use of generated heat for cooling, heating, hot-water supply, steam etc.


- Cogeneration has a wide range of application for a variety of areas and systems that use heat, including those for households/businesses, large cities, middle cities and farming villages etc., as well as district cooling/heating (district-scale use) and smart energy systems etc.
- As for its application in farming villages, there are cases where this system is used as a tri-generation using electricity, heat and CO_2 for greenhouse cultivation.
- Cogeneration can work in tandem with renewable energy to make up for power.
- Cogeneration can contribute to "Business and Living Continuity Plan" as emergency power systems.
- •

Expected CO_2 Reducing Effect

• Compared with conventional systems (thermal power + boilers), it can reduce CO_2 emissions by about 30-40%.




(2) Using sea/river water

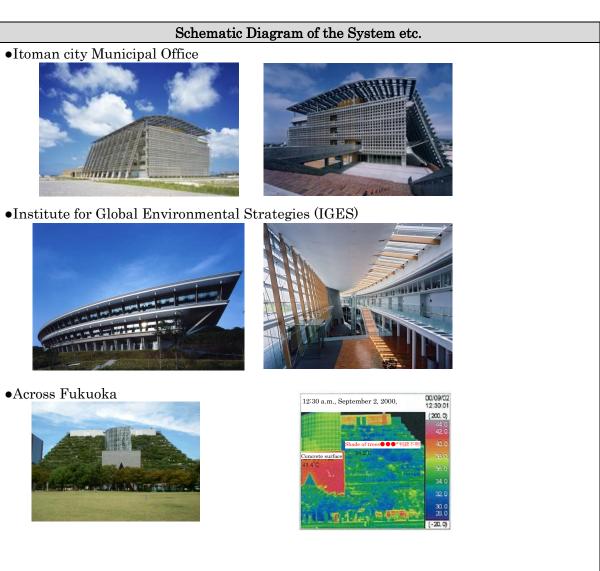
Classification of MeasuresLow CarbonApplicability as perMeasureType of Town						er			
Supply/ Demand	Major Classification	Minor Classification		Ι	II	III	IV		
Supply	Untapped		Using sea/		Н	Μ	L		
side	energy		River water						
		Overview of l	Measures and App	olicabili	ty				
 As sea/river water temperature is stable and is lower in summer and higher in winter than the atmospheric temperature, it will contribute to improving energy efficiency both as a coolant of heat pumps used in heat source equipment for cooling and as a heat source water of heat pumps for heating/hot-water supply. As the use of seawater requires countermeasures for salt damage to equipment and for marine organisms, and the use of river water requires drought management measures etc., it is a common practice to combine the use of sea/river water with large-scale facilities such as district heat supply systems. 									
		Expecte	d CO ₂ Reducing E	ffect					
	-	ot-water supply	reduced through in the relevant con les of Application	-	-	ergy ef	ficiency in		

Classification	Classification of Measures				licability	as per	s per		
0 1 /	NC :	74.	Carbon		e of Town	TTT	1767		
Supply/ Demand	Major Classification	Minor Classification	Measure	Ι	II	III	IV		
Supply side	District	Classification	District		н	M	L		
Supply side			heating		п	IVL			
	energy (heat supply)		and cooling						
	(neat supply)		(DHC)						
		Overview of Me		nlicabilit					
 cooling/h By mean aesthetic pollution Compare reduced b 	eating media fro s of this system, can be promote -abatement, hea d with individua by 10%-14%*. Fu alized by utilizin	e buildings in ce om regional ener not only energy d, which include t-island counter <u>Expected C</u> al (heat source) s urther reduction ng unused energ District-Scale Utili he Direction towar	gy supply plate r-saving but all e labor-saving, rmeasures, pre- O_2 Reducing systems, prime of energy con- cy, contributing ization of Unuse	nts in an so energy efficient evention Effect ary energy sumption g to a sig d Energy	efficient i y security use of bu of urban o gy consum n (by not l nificant r - the Cur finistry of l	manner. and urk ilding sp lisasters ption ca less than eduction rrent Stat Economy,	an paces, s etc. an be n 20%) n of CO ₂ .		
	a 1 · · · ·		of Application		1				
	-	ku Sub-center, N aka Senri New '			-				

(3) District heating and cooling (DHC) Classification of Measures

	(.)•										
Classificati	Classification of Measures		Low Carbon	Applicability as per			per				
			Measure	Type of Town			L				
Supply/	Major	Minor		Ι	II	III	IV				
Demand	Classification	Classification									
Demand	Building	Reducing load	Sunlight reflection,								
side			shading and thermal								
			insulation								
	(Overview of Meas	ures and Applicability								

(4)Sunlight reflection, shading and thermal insulation


- Solar radiation reaching a building's rooftop is converted into heat, which causes higher room temperatures and rising air-conditioning costs. Thus, applying high solar reflectance paint for roof surfaces prior to the conversion of solar radiation into heat is effective in controlling rising room temperatures and lowering air-conditioning energy requirements. The same measure is similarly effective for roads and sidewalks and the roofs of public transport vehicles (e.g., buses, trains, and trams).
- Sunlight shading is very effective in reducing thermal load put into a building from outside. As the solar elevation changes according to its bearing, the type of suitable eaves or blinds also varies. In planning sunlight shading, it is necessary to take the building exterior into account so that the sunlight would be effectively shaded.
- Shutting off sunlight on the outer side of a building is more effective. External blinds installed on the outer side of a building would help reduce the thermal load in the rooms. They also play the role of adjusting natural lighting when the blinds are designed to change their angles automatically according to the solar elevation.
- Planting vegetation around a building cuts direct sunlight off the concrete surface and takes effect on controlling the rise in the air temperature around the building because of evapo-transpiration effect.

Expected CO_2 Reducing Effect

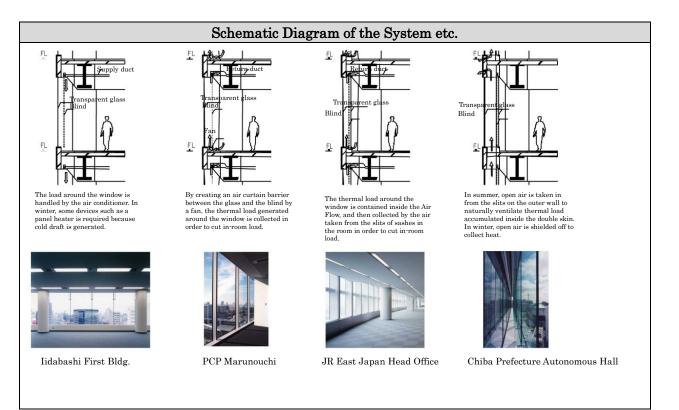
• Power consumption cut is expected due to the reduction of air conditioning load thanks to the lowered temperature inside the building and natural lighting. As a result, it takes effect on the reduction of CO_2 emission.

Examples of Application

Itoman city Municipal Office, Institute for Global Environmental Strategies (IGES) Main office Building, Across Fukuoka (Commercial-Office-Cultural Complex)

(5) Façade engineering

Classification of Measures		Low Carbon Measure	Applicability as per Type of Town					
Supply/	Major	Minor		I	II	III	IV	
Demand	Classification	Classification						
Demand side	Buildings	Reducing heat load	Façade engineering					
Overview of Measures and Applicability								
• The face	do onginoorin	a refers to the t	ochpology of rod	ucing the	rmal loa	d from a	itsida hy	


- The façade engineering refers to the technology of reducing thermal load from outside by applying high heat characteristics to the window and outer wall which constitute a façade.
- The important component is high performance glass, such as the duplex glass containing air space between two pieces of glass and low-e glass with specific coating for blocking the radiation heat from traveling through. These types of glass also enhance indoor environmental performance around the windows.
- One possible approach is the "Air flow windows". They improve the thermal insulation properties and sunlight shading around a bow window by creating a kind of air curtain by ventilating inside the double-layered glass equipped with a built-in blind. Ordinarily, room air is sucked from beneath the glass window and the air inside the double-layered glass is led to under the ceiling with a ventilation fan mounted under the ceiling.

Expected CO₂ Reducing Effect

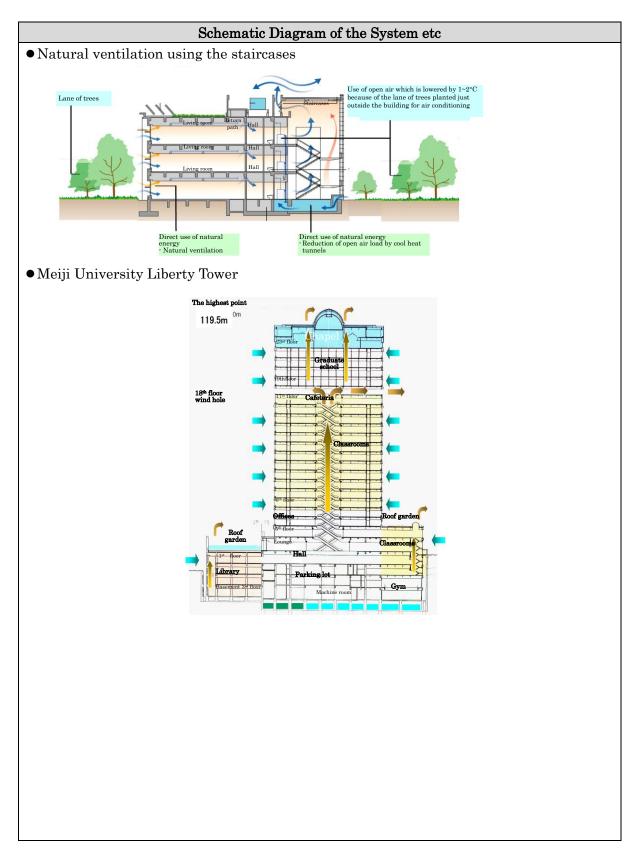
• Diagrams below show the simulation examples of PMV when using ordinary glass only and using low-e glass plus eaves, the peak load of the perimeter, and annual thermal load. The result shows that the employment of eaves plus low-e glass cuts the peak load by 43%, indicating that approximately 16% of thermal load will be slashed annually.

Examples of Application

Iidabashi First Building, etc.

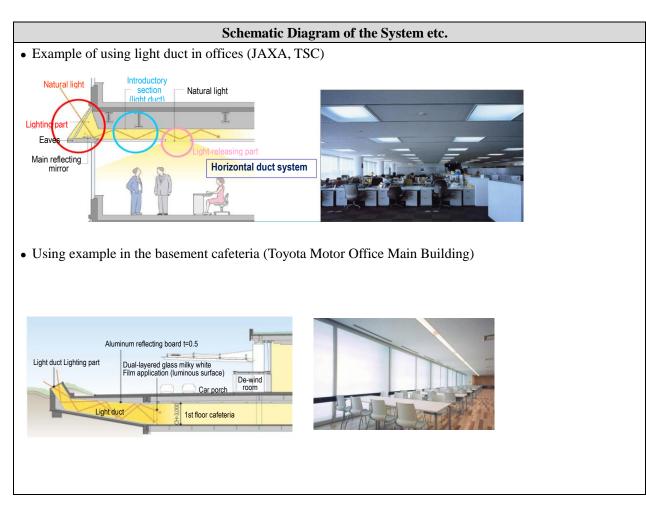
(6) Natural ventilation

Classificat	Classification of Measures		Low Carbon	Appli						
		Measure	Type of Town							
Supply/	Major	Minor		I	п	ш	IV			
Demand	Classification	Classification								
Demand	Buildings	Passive	Natural							
side		energy design	ventilation							
		& equipment								
	Overview of Measures and Applicability									


- The mid-term air-conditioning energy can be reduced by planning to take natural wind into rooms, for instance by installing apertures or opening-closing windows effectively or natural ventilation voids inside the building.
- The void enables natural air flow even when it is calm. (The natural ventilation by the difference in temperatures between tops and bottoms.) Moreover, natural ventilation can be effectively obtained no matter which direction the wind blows. (The wind shielding board prompts natural ventilation as negative pressure zone is created when the wind flows through the upper part). Example: Meiji University Liberty Tower (Top figure)
- Natural ventilation using the staircases can also produce the same effect as installing natural ventilation voids and wind shielding boards. (When air is calm, ventilation is enabled naturally by the difference in temperatures between upper and lower part of the staircases. When a wind shielding board is mounted on the top, a negative pressure zone is created as the wind passes through the upper part, thereby allowing natural ventilation free of the wind direction. (Bottom figure)

Expected CO_2 Reducing Effect

• Reduction of CO₂ as a result of reduced air conditioning load


Examples of Application

Meiji University Liberty Tower, Tokyo Japan

Classification of Measures			Low Carbon Measure	Applicability as per Type of Town			
Supply/	Major	Minor		I	II	III	IV
Demand	Classification	Classification					
Demand	Building	Passive energy	Daylight use,				
side	_	design &	lighting system				
		equipment					
	•	Overview of Meas	ures and Applicabilit	t y		•	
• The lig	ght from the windo	w is limited in its reach, o	r no lighting is availa	ble if there	e is no w	indow ir	the
room.	However, natural	l light can be reached to th	ne darker areas in the	building b	y using a	a light du	ıct.
The ill	lustrations given be	elow show the system of a	light duct using alum	inum mirr	or with	95%	
reflect	ivity of visible ligh	t for its inside in order to	get the light transport	ed from th	e light c	ollection	part
to the	light-releasing part	•					
		Expected CO ₂	2 Reducing Effect				
The effect of energ (In the offices) Conventional method Light duct and dimming		er. Power consum [KWh] 00, 000 200, Cut by about 65% 	000 2000 1000 0 0 10	CC02 emission antional method duct and Dimming 20 30 ccumulated amo		50 60 [Year]	
		Evonnlog of	Amplication				
T 4	P 1 - 2	Examples of		T ·) ·			
Office Main		Agency (JAXA), Tsukuba	space Center (TSC),	Toyota M	otor Cor	poration	

(7) Daylight use plus lighting system

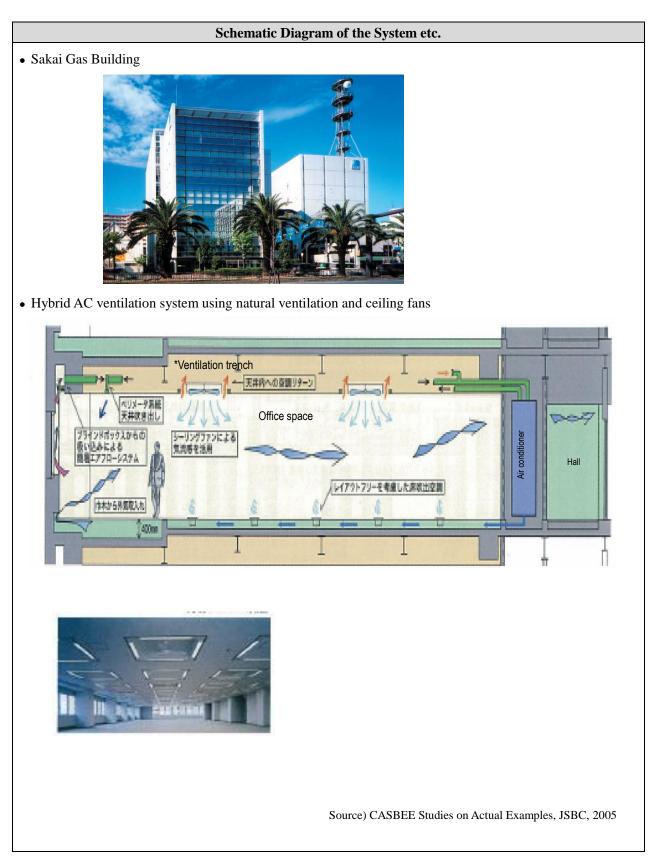
Classification of Measures		Low Carbon	Applicability as pe			c	
			Measure	Type of Town			
Supply/ Major Minor			Ι	II	III	IV	
Demand	Classification	Classification					
Demand	Building	Passive	Hybrid of natural				
side		energy design	ventilation plus air				
		& equipment	conditioning				
		Overview of N	Ieasures and Applicab	ility			
• As an	air conditioning fa	cility system incor	porated into a building,	it			
is a hy	brid air conditioni	ng system which co	ombines three types of a	ir			
condit	ioning systems, air	current feeding by	the ceiling fan, floor				
blow-o	out air conditioning	g as well as the nati	ural ventilation.				
• A ceil	ing fan generates g	gentle air current by	stirring a large amount	of			
wind wit	h less electricity. I	t can realize a com	fortable space at 28°C				
even in s	summer.						
	00054						
	1000 0000 1000 000 1000 000	7					
	0	NATE OFFICE					
		· AR /					
	-	AU OF BASHELLS					

(8) Hybrid of natural ventilation plus air conditioning

2+3

登録車 コミュニケーションスポット

Cross-sectional view of building

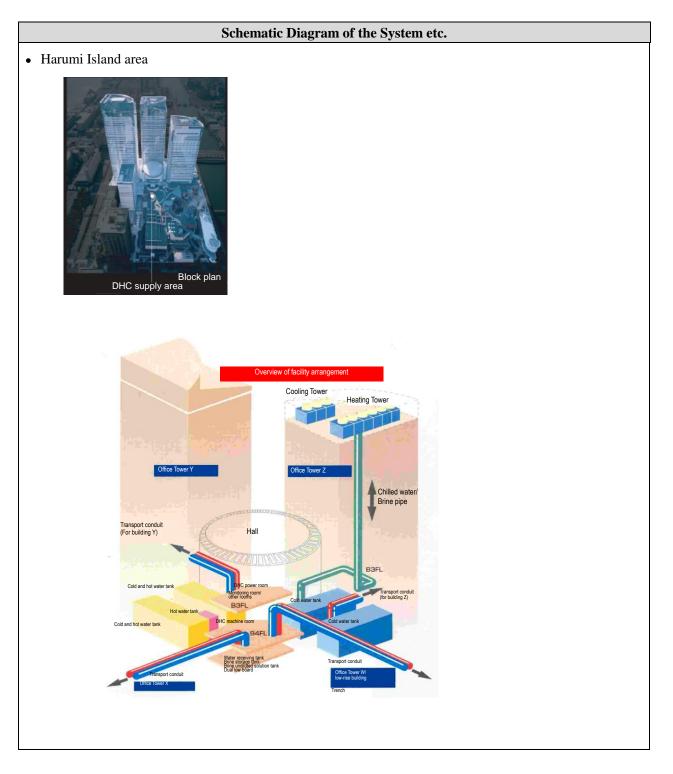

建物断面構成図

Expected CO₂ Reducing Effect

• Air conditioning load can be reduced by making natural ventilation as the principal approach. Further CO₂ reduction can be expected by employing a human sensor or an automatic light dimmer for making the best of daytime light along with natural ventilation.

Examples of Application

"Sakai Gas" Building, Osaka Japan

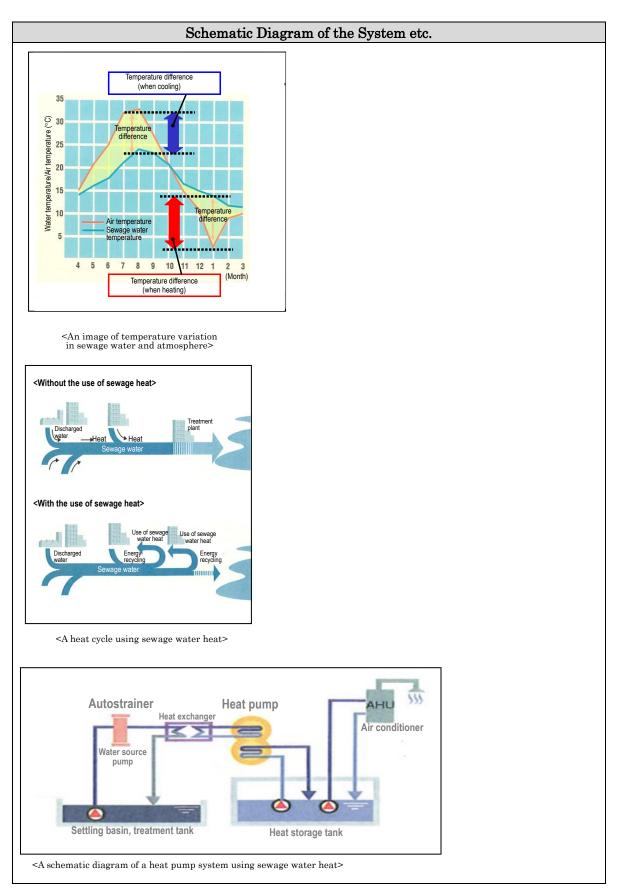

Classification of Measures			Low Carbon	Appl				
		Measure	Type of Town					
Supply/	Major	Minor		I II III IV				
Demand	Classification	Classification						
Demand	Building	High-efficient	High-efficient					
side		Facility	heat source					
		systems	plus heat					
			storage					
Overview of Measures and Applicability								
• In an intensive and high density district development on a large scale, a system of generating cold/hot								
water and steam at the central plant in the district and supplying them to individual buildings can better								
contribute to the realization of a low-carbon society by making the best of scale merit.								
• The central plant in the district is divided into three categories.								
1) Electricity system: a system of generating cold and hot water by using turbo chillers, heat pump chiller, etc.								
2) Gas syste	em: a system of gene	rating cold water and	steam by gas-absorpt	ion chillers o	r steam abs	orption chill	ers using the	
co-gener	rated (CHP) steam ex	haust heat.						
3) Electrici	ty/gas combination s	ystem: a system of ge	nerating cold water, st	team (hot wa	ter) by com	bining 1) ele	ectric heat	
source a	nd 2) gas heat source							
• There a	re systems which	combine one of th	e above-mentioned	l systems w	ith unuse	d energies	such as	
river water, sewage heat, exhaust heat from waste incineration plants, and so on.								
Expected CO ₂ Reducing Effect								
• The use of highly efficient district air conditioning and heating allows the reduction of air conditioning								
load, which is expected to reduce CO_2 emission significantly.								
• Furthermore, the reduction of CO_2 emission in per unit can be expected by storing heat energy in								
thermal storage tanks with the use of night time electricity.								

(9) High-efficient heat source plus heat storage

Examples of Application

Harumi Island, Triton Square, Tokyo Japan

(10) Music neur nom sewage realment plant								
Classification of Measures			Low Carbon	Applicability as per			per	
		Measure	Type of Town					
Supply/	Major	Minor		Ι	Π	III	IV	
Demand	Classification	Classification						
Supply	Untapped	Using	Using Waste heat from		Η	Μ	\mathbf{L}	
side	energy	Waste heat	sewage treatment plant					
Overview of Measures and Applicability								

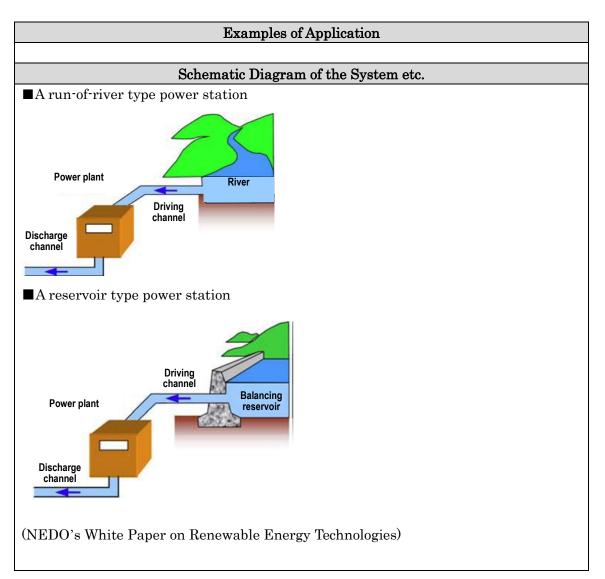

(10) Waste heat from sewage treatment plant

- As sewage water temperature is lower in summer and higher in winter than the atmospheric temperature, it will contribute to improving energy efficiency both as a coolant of heat pumps used in heat source equipment for cooling and as a heat source water of heat pumps for heating/hot-water supply.
- Using sewage water heat means the reuse of city waste heat, and it may be regarded as a recycling-oriented city energy system.
- It is necessary to pay attention to the balance between the heat supply source and the heat load from cooling/heating as well as hot-water supply, considering such regional conditions as the amount of sewage water, daily/seasonal variations in temperature and interfusion of snow-melt water. In addition, as heat demand also varies in terms of time period and season, this variation should be reduced by installing heat storage tanks.
- Moreover, it requires corrosion-resistant treatment of the related equipment based on the water quality, as well as strainers for removing foreign matters contained in the sewage water.

Expected CO₂ Reducing Effect

• It is expected that CO₂ will be reduced by means of improving energy efficiency in cooling/heating and hot-water supply in the relevant communities.

Examples of Application


(11) Hydroelectric power generation

Classification of Measures		Low Carbon	Applicability as per			per	
		Measure	Type of Town				
Supply/	Major	Minor		Ι	Π	III	IV
Demand	Classification	Classification					
Supply	Renewable		Hydroelectric power		\mathbf{L}	\mathbf{L}	М
side	energy		generation (Small				
			and middle scale)				
Overview of Measures and Applicability							

- In principle, introduction of renewable energy power generation systems will lead to the reduction of carbon dioxide emissions etc. However, because of the fact that the cost and efficiency are dependent on such factors as the climate condition and administrative support measures in the relevant regions, and the generated amount of electricity is highly variable, it is a common practice to combine hydroelectric power with large-scale power generation and energy storage systems.
- Small and middle scale hydroelectric power generation generally makes use of water without storing it. Depending on the method of water use and the structure for gaining a head of water, several forms exist.
- Small and middle scale hydro power generation carries a heavy burden of electrical equipment costs. It takes a greater share of the total construction cost in comparison to large scale hydro power generation.
- In addition to the systems utilizing the nearby rivers, the cases can be assumed where hydroelectric power generation systems are installed as a form of agricultural drainage facility in farming villages.

Expected CO_2 Reducing Effect

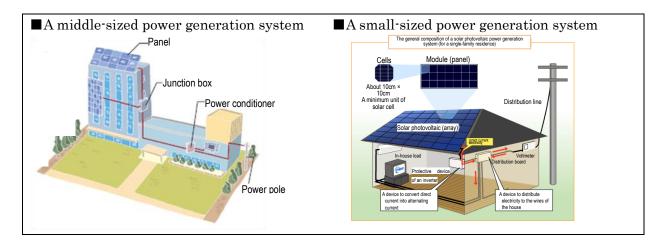
• It is expected that CO₂ will be reduced by means of increasing electricity generation from renewable source.

Classificatio	on of Measures		Low Carbon			ity as	-
~ • ·			Measure			f Town	1
Supply/	Major	Minor		I	Π	III	IV
Demand	Classification	Classification					
Supply	Untapped		Using Waste heat from		Η	Μ	Μ
side	energy		incineration plants				
	(Overview of Me	easures and Applicability				
• The exha	ust gas from refus	se incineration at g	arbage disposal facilities has a l	nigh ter	nperati	are and	it can
be utilize	ed for power gener	ration and as an ir	frastructure for heat supply.				
• As garba	ge disposal facilit	ies are often built a	away from residential areas, it is	necess	ary to o	develop	a
sitting pl	an which facilitate	es heat use, on the	basis of garbage disposal facilit	ies as ai	n infras	structur	e for
energy su	upply.						
		Expecte	ed CO ₂ Reducing Effect				
-		•	eans of improving energy efficie		each re	gion th	ough
power ge	eneration from un	0,	itilization of surplus waste heat.				
		Exampl	les of Application				
		Sehemetic Die	more of the Surton ate				
		Schematic Dia	gram of the System etc.				
	G	arbage disposal plant	Here, water is heated into steam of high imperature pressure. High-pressure steam	Chimney Heat exchang	Recipients heat: household and busine facilities e er Distri heat pla	ds ass tc. rict ing	

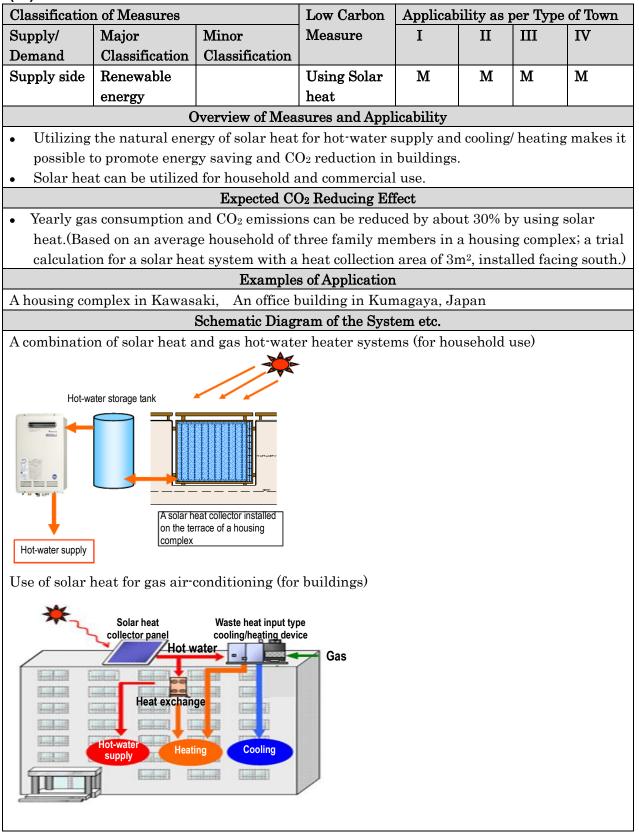
(12) Waste heat from incineration plants

(13) Solar power generation

Classification	n of Measures		Low Carbon Measure	Арр Тур	r		
Supply/	Major	Minor	-	Ι	II	III	IV
Demand	Classification	Classification					
Supply side	Renewable		Solar power	Μ	Μ	Μ	Μ
	energy		generation				
	(Overview of Me	easures and App	licability			
• In princi	ple, the cost ar	nd efficiency of	renewable energ	gy power	generat	ion dep	end on such
factors a	s the climate c	ondition and a	dministrative su	pport me	asures i	in the r	elevant
regions.	Since the gene	rated amount o	of electricity is h	ighly var	iable, it	is a con	mmon
practice	to combine the	renewable pov	wer generation s	ystems w	ith conv	vention	al power
generati	on and energy	storage system	ns.				
• Solar ph	otovoltaic powe	er generation is	s a collective term	m for tecl	nnologie	s using	5
semicono	luctors to conv	ert light energ	y into electricity.	Semicor	ductors	(solar	cells) can be
1							


- semiconductors to convert light energy into electricity. Semiconductors (solar cells) can be classified into the types using multi-crystalline silicon, thin film silicon, chemical compound/organic etc. Solar power generation ranges from large-scale power generation systems to middle- and small-sized power generation systems for industry and household use.
- Compared with other renewable energy power generation systems, this system has an advantage in terms of the ease of installation and maintenance, and no conditions for installation. On the other hand, it has the highest introduction cost per unit of electricity generated.
- A certain amount of energy output can be expected where solar insulation is obtained, and this system has a wider applicability than solar heat power generation or wind power generation systems.

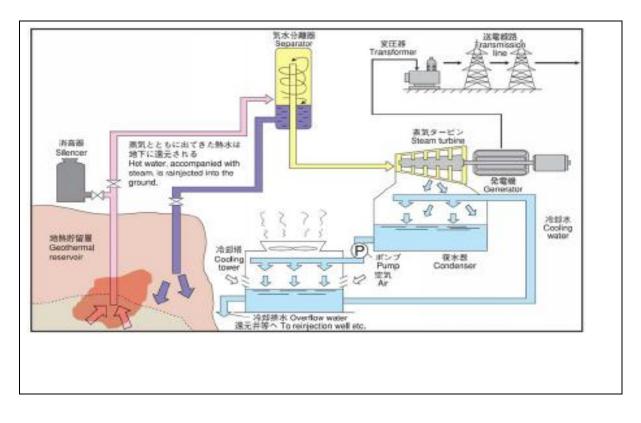
Expected CO₂ Reducing Effect


• It is expected that CO₂ will be reduced by means of improving energy efficiency in electricity/heat generation in the relevant communities.

Examples of Application

Schematic Diagram of the System etc.

(14) Solar heat

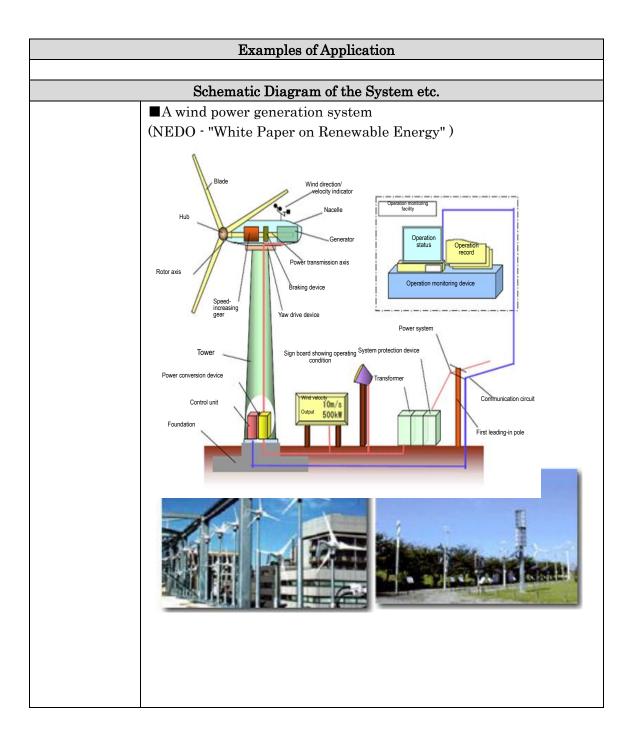


(15) Biomass Power Generation

Classification	n of Measures		Low Carbon Measure	App Typ Tow		v as per	
Supply/	Major	Minor		10w		III	IV
Demand	Classification	Classification		-		111	1.
Supply Side	Renewable		Biomass		L	L	М
	Energy		Power				
			Generation				
	Ov	erview of Mea	asures and App	licability	7		
• Biomass	power generation	on is a collect	ive term for po	wer gene	ration te	chnologi	es using
biomass	(animal/plant re	sources and o	organic wastes	from the	ese resou	rces) for	direct
incinera	tion, heat decom	position, fern	nentation etc. T	he form	of bioma	ss can b	e roughly
classified	d into unused rea	sources (fores	st resources, ag	ricultura	l residue	es etc.), v	vaste
resource	${ m s}$ (building mate	rials, paper r	nanufacturing	material	s, livesto	ck manu	ıre, food
residues	etc.) and produc	tion resource	es (pasture gras	s, water	plant, ve	egetable	oil etc.).
• Suitable	locations vary w	vith the type	of resources be	cause bic	mass ne	eds stab	le supply.
		Expected	CO ₂ Reducing	Effect			
• CO ₂ will	be reduced through	ugh renewabl	le power genera	ation.			
		Example	es of Applicatio	n			
	So	hematic Diag	gram of the Sys	tem etc.			
Abiomass	power generatio	n system (NE	EDO)				
A high-efficiency	y gas conversion power ger	eration system using	sewage sludge				
Sewage plant	_						
	Dehydrated sludge	Sludge treatment fac	Electricity				

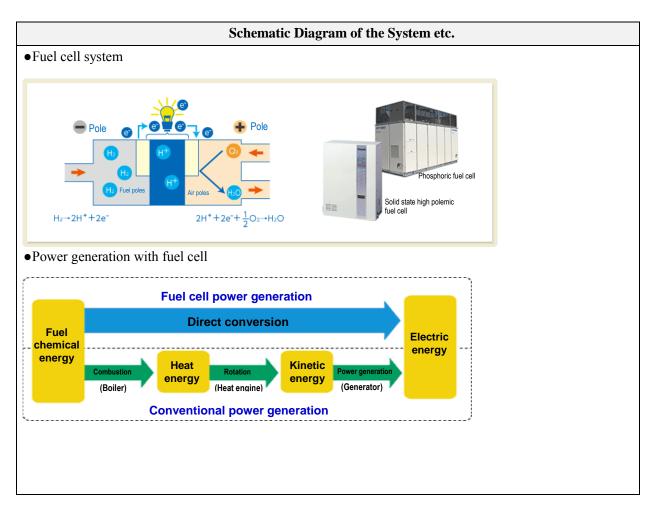
(16) Geo-thermal power generation

Classificat	tion of Measures	l	Low Carbon Measure		licability e of Towr	_	
Supply/	Major	Minor		I	Π	III	IV
Demand	Classification	Classification					
Supply	Renewable		Geo-thermal		L	L	Μ
side	energy		power				
			generation				
	(Overview of M	leasures and App	licability			
•Geo-ther	mal power gene	ration is a col	lective term for po	ower gene	eration u	sing geo-	thermal
energy.	There are two d	ifferent syste	ms to convert the	mal ener	rgy into e	electrical	energy
via stea	m turbines; a fla	ash and binar	y system.				
• Compar	red with other re	enewable ener	gy generation sys	tems, thi	is system	has an	
advanta	age in terms of e	nergy stabilit	y, but it is necessa	ary to tak	e accoun	t of	
environ	mental risks (ai	r pollution ca	used by releases o	f hydroge	en sulfide	e etc.).	
• The reg	ions where this	system can be	e applied are limit	ed to tho	se which	can mee	t the
criteria,	, namely, a speci	fied amount o	of geo-thermal ene	ergy resou	arce exist	ting unde	er the
ground	which can be de	veloped at a r	easonable cost.				
		Expected	CO ₂ Reducing Ef	fect			
• It is exp	ected that CO ₂ v	will be reduce	d by means of usi	ng clean	energy fo	or	
electrici	ty/heat generati	on in the rele	vant communities	8.			
		Exam	ples of Application	ı			
		Schematic D	iagram of the Syst	tem etc.			
■A geo-th	ermal power gen	neration syste	em (A binary syste	em (uppe	r) vs. a fl	ush syste	em
(lower) -	"White Paper or	n Renewable	Energy", NEDO				
							=1
	故保設		特徴 沸点の低い媒体を使用して 式では利用できなかった低	タービンを駆逐	することによ	り、蒸気発電が	8
E	aporator		Characteristic Driving the turbine by using the				
	PEZ		power generation with the us was not possible with the ster	se of hot water i	having a low ter		
低温熱水			送電 タービン Turbine †	Transmission 空電機			-
Low hot water				Generator			
	¥ .						
1		Î					
生産者	Production 3	l元井 Reinjectio	n well			凝縮器 Condenser	
			3	水または空気			
				Water or air			<u> </u>
	AR		気媒体(ペンタン、アンモニ7 ing fluid of low boiling(pentar		dution)		
1		· · · · · · · · · · · · · · · · · · ·	and the second sec		-		
		Feed p					


(17) Wind power generation

Classification of Measures		Low Carbon	Applicability as per				
		Measure	Type of Town				
Supply/	Major	Minor		Ι	Π	III	IV
Demand	Classification	Classification					
Supply	Renewable		Wind power		\mathbf{L}	\mathbf{L}	М
side	energy		generation				
	0	verview of Mea	asures and App	licability			

- Wind power generation is a collective term for technologies used to generate electricity by means of capturing wind energy with rotor blades and transferring the rotational energy to generators. This power generating system has various types depending on the structure of blades and size, but it can be roughly classified into large-scale wind power generation linked to the grid and middle- or small-scale wind power generation intended to be used within each region.
- Compared with other renewable energy generation systems, this system has an advantage in terms of low introduction cost per unit of electricity generated. On the other hand, it has a disadvantage of low energy efficiency in case of limited geographical conditions (dependent on wind conditions) or small-scale power generation.
- As wind energy increases in proportion to the wind velocity, it is highly probable that this system can be applied in regions with favorable wind conditions.


Expected CO₂ Reducing Effect

• It is expected that CO₂ will be reduced by means of using clean energy in electricity generation in the relevant communities.

(18) Fuel cell


Classification	ı of		Low Carbon		icability :	as per	
Measures			Measure		of Town	[
Supply/	Major	Minor		I	п	III	IV
Demand	Classification	Classification					
Demand side	Buildings	Equipment	Fuel cell	Н	Н	Μ	Μ
		installed					
		At facilities					
		Overview of Mea					
-		drogen taken out o	-				
		ed is collected as s				-	
-	-	is generated direct		-			ction.
		ous uses and syste					
	ributes to the redu	ction of peak time	power consumpt	tion and the	improven	nent of ene	ergy
security.							
		*	D2 Reducing Effe				
		as hydrogen and o					
	•	oon dioxide (CO ₂)		• •			
generated	amount is less whi	le using the identi	cal volume of ele	ectricity and	heat, thar	iks to the l	nigh
overall eff	iciency.						
• For an ord	inary household of	f four people living	g in a house, CO	2 can be red	uced by a	pproximat	ely 40%
per year co	ompared to the cor	ventional system	(thermal power g	eneration +	boiler).		
		Examples	s of Application				
• For building	ngs, automobiles, j	personal computer	rs, etc.				
Fuel cell car							
	Secondary cell Cooling system	Fuel cell s	Hydrogen				
Fuel Cell for Re	esidences Driving	system					

106

Classificatio	n of Measures		Low Carbon Measure		pplicab ype of T	ility as j 'own	per
Supply/	Major	Minor		Ι	Π	III	IV
Demand	Classification	Classification					
Demand	Transportation	Public	Well developed	Μ	Μ	М	X
	system	transportation	Public				
		systems	Transportation				
			Network				
	Ov	erview of Measu	res and Applicabi	lity			
• There as	re a variety of pul	olic transportatio	on systems in citie	es. Ty	pical tra	ansport	ation
systems	are subways, LR	T, BRT, route bu	ses, etc.				
• By estab	olishing a public t	ransportation ne	etwork which com	bines c	ptimal	public	
transpo	rtation systems b	ased on the city s	size and the dema	nd for	transpo	rtation,	low
carbon u	urban life and sus	tainable cities m	ust be realized th	rough	the use	of publi	ic
transpor	rtation with less (CO ₂ emission.					
		Expected CO ₂	Reducing Effect				
As peop	le use public tran	sportation system	ns which emit less	s CO ₂ t	han au	tomobile	es do, its
develop	ment contributes	to curbing the ar	nount of CO ₂ emis	ssion ir	n cities.		
		Examples o	f Application				
• There as	re a number of ex	amples of well de	eveloped public tra	anspor	tation r	network	in cities
in the A	PEC region.						


(19) Transportation (Establishment of public transportation network)

108

Classificatio	n of Measures		Low Carbon Measure		pplicat ype of '	-	ls per
Supply/	Major	Minor	measure	I		ш	IV
Demand	Classification	Classification					
Demand	Transportation	Public	Intra-district	Η	Н	Η	\mathbf{L}
	system	Transportation	Transportation				
		System (Bus,	system				
		LRT)					
	Ov	erview of Measu	es and Applicability				
• The LR'	Г, BRT, and buses	s are the public tr	ansportation system	s that	offer se	ervices	s in a
part of c	tity area such as	CBD (Central Bus	siness District). Th	e estab	lishme	nt of t	those
systems	would serve to in	nprove convenien	ce for the people wh	o trave	l in the	e area.	
Althoug	h the carrying ca	pacity is smaller	than that of mass tra	anspor	tation s	system	ns such
as subw	ays, they can be	established with l	ess cost and the dist	ance b	etween	stops	can be
set shor	ter as well, comp	ared to subways.				-	
		Expected CO	2 Reducing Effect				
As trave	ling by local pub	-	becomes more conve	enient,	people	begin	to use
		-	less CO ₂ compared t			-	
-			unt of CO ₂ emission				
			of Application				
• There a	re a number of ex		n the APEC region.				

(20) Local Transportation System (Bus, LRT, etc.)

(21) Electric Vehicle

Classification	n of Measures		Low Carbon		licabili	• -	er
			Measure	Тур		own	
Supply/	Major	Minor		I	п	ш	IV
Demand	Classification	Classification					
Demand	Transportation	Vehicles	Electric	М	Μ	Μ	M
Side	system		Vehicle (EV)				
		erview of Measu					
	e use of electric ve	-		-	0		ironment
	sage such as inst	-			ns activ	rity for	the EVs
environn	nental performan						
		-	O ₂ Reducing E				
	't run on fossil fu	-		•	mobile	s, and t	therefore,
they serv	ve to reduce the a	mount of CO ₂ e					
			* The amount of CO2 gasoline car which a	emission is co chieved the mile	mpared reg eage criteria	arding a for 1500-c	C
			gasoline car which a class cars specified i of energy use as 100	n the Law rega	rding the ra	tionalization	
	100		-				
	80 100				93		
	60			68			
	40						
		39	45				
	20						
	0 Standard gas	oline car Electric vehicle	Hybrid car Na	atural gas car	Gasoline ca		
	(Standard	value)			(Cars whos mileage criteri	a has	
		л р	C I C IZ	D	improved by	,	. T
a .			nformation from Ka	0	electural	Governm	ent, Japan
-	of CO ₂ emission b		e cars and EVs	5			
(Compar	rison of 1500cc-cla						
		Example	es of Applicatio	n			
• Introduc	tion of EVs has a	lready started i	n some econom	ies in the	APEC	, even	though it is
in a sma	ll scale and for th	e experimental	purposes. Rec	ently, con	nmercia	al prod	uction of
EV has s	started for the use	e of general pub	olic.				
		E	lectric Vehicle	Tit			
							0
					1	e -	TIT
				>			
	Sc	hematic Diagra	am of the Syste	m etc.			

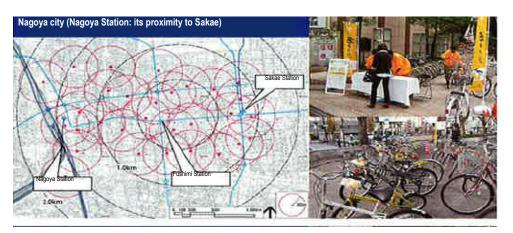
Classification	tion of Measures Low Carbon Applicability as per Measure Type of Town		r				
Supply/	Major	Minor		Ι	II	III	IV
Demand	Classification	Classification	F 4 1	٦Æ	м	3.6	16
Demand	Transportation	EV-related	Fast charger, Small-size	Μ	Μ	Μ	Μ
	system	hardware	sman-size storage				
			battery				
Overview of	Measures and Ap	nlicability	Dattery				
	rgers for electric		installed taking	thoir u	2200 200	nos and	driving
	nto account.	venicies will be	instaneu taking	, then u	sage sce	nes anu	unving
-	oduction of fast cl	argers will be	promoted by gra	ening hi	isinoss (nnortu	nitios
	city redevelopmen		promoted by gra	sping or	15111055	pportu	110105
54011 45 (O ₂ Reducing Ef	fect			
• Compare	ed to gasoline cars				oproxim	ately 16	0km with
-	charge), which exe	-	-	-	-	-	
	nd small-size stor	-					-
-	ill, in turn, contri	-					, , , , , , , , , , , , , , , , , , ,
	,,,		of Application				
 Installat 	tion has already st			stations	. and sh	opping	malls. etc.
		-	ram of the Syste		,	-rr 8	
● 10km	 相違原用 相違原用 使川田 東末市 伊男原市 伊男原市 (月田 東京市 (月田 (月田<						

(22) Fast charger, Small-size storage battery

(23) Community Cycle Sharing

Classificatio	n of Measures		Low Carbon	Applicability as per			er
			Measure	Ту	pe of To	wn	
Supply/	Major	Minor		Ι	Π	III	IV
Demand	Classification	Classification					
Demand	Transportation	Public	Community	н	Η	Н	L
side	system	transportation	Cycle				
		systems	Sharing				
	Ov	erview of Measur	es and Applica	bility			

- The community cycle or bike-sharing (hereinafter, the CCS) refers to a system of sharing bicycles where users can pick-drop a bicycle at their convenience. This system aims at improving the use of bicycles as an alternative to cars, and addressing the problems of illegal parking or abandoned bicycles.
- By installing CCS ports mainly around railroad stations and public facilities, this system is expected to take effects in making up for the unavailability of public transportation infrastructure and improving accessibility.


Expected CO₂ Reducing Effect

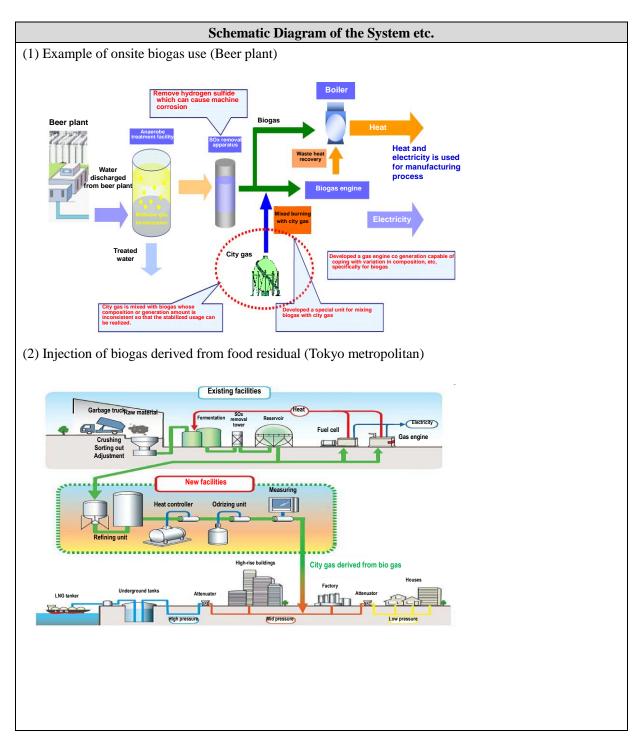
With respect to the NUBIJA (the CCS of Changwon city, South Korea), about 45% of users in their 30s and older have reportedly switched from cars to bicycles for commuting, after one year of the CCS introduction (source: NUBIJA HP). The appropriately introduced CCS will prompt people to switch from automobiles to bicycles, and it is expected to take effect in reducing CO_2 emission in the transportation sector.

Examples of Application

The CCS ports will be installed at railroad stations, public facilities, parks, commercial facilities, office buildings, apartment complexes, and so on. Users can pick-drop a bicycle freely. Registration required. IC cards will be introduced for payment.

Schematic Diagram of the System etc.

CCS Port arrangement


(Source: JTPA Report, City and Transportation, Japan Transportation Planning Association, 2011)

(24)Smart Grid

	n of Measures		Low Carbon			ty as p	er
~			Measure		of Tov		
Supply/	Major	Minor		Ι	Π	III	IV
Demand	Classification	Classification					
Supply/	Smart Grid System		Smart Grid	Η	Н	Η	Η
Demand	and others	System	System				
	Ove	rview of Measures a	nd Applicability				
and solar, wh act as distribu	ide of electricity compr ich are unstable in natu ited power sources, and on of energy consumptio	re. The demand side is I the consumers are link	equipped with solar	cells and	electric	c vehicle	whic
	city system is equip id supply on the rea						
	iu suppry on the rea	Expected CO ₂ Redu			LICCUIT	city st	ippiy.
through t	n of the use of th he system stabiliza n of the overall emis	tion control			ted po	ower s	suppl
		xamples of Application					
	Scl	hematic Diagram of t	he System etc.				
New Er Wind Power	Photo- voltaic scale strated sources Nuclear Nuclear System Continue	eries Operatio Facili Mana	n ties gement Factory/ Office Dis F	tributed ower ources	ers		

(25) Garbage

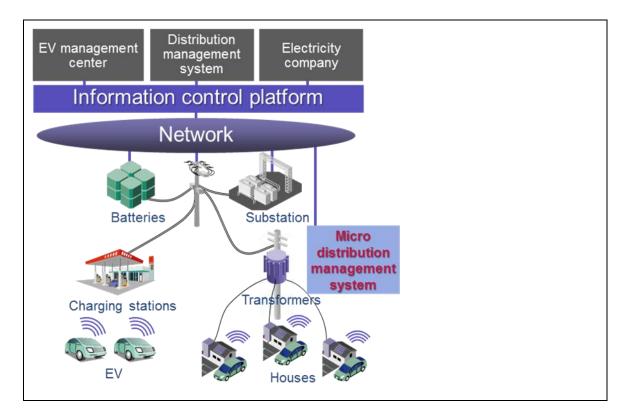
Classificatio	n of Measures		Low Carbon Measure		plicabili pe of Tov		er
Supply/	Major	Minor		I	п	ш	IV
Demand Supply side	Classification Renewable	Classification Biomass	Biogas injection				
Supply slue	energy	power	into City gas				
	energy	generation	combustion				
		0	sures and Applicabi	litv	1		1
Excessive			ge or food waste, etc.		an effecti	ve onsite	e use as
			If generated biogas of	-			
			gas, co-generation po		•		
	-		conservation and CO			o they h	elp make
-			ources, such as seway			-	-
	n in a stable manne	•		0		0 0	
			D2 Reducing Effect				
• CO ₂ can	be drastically redu	-	0				
• (Example) Injection of biog	as into city gas cor	nduits: Approx. 1,830	tons/yea	r		
• (outlined	in below: case exa	mple of Tokyo me	tropolitan)	-			
		Examples of A	pplication (In Japan)			
Biogas ge	eneration- Tokyo m	etropolitan, Yokoł	nama city, etc. (Abour	t 30 sewa	ige treatm	ent facil	ities, etc.)
Biogas au	tomobiles- Kobe c	tity, Ueda city					
• Injection	of biogas into city	gas conduits Ke	obe city, Tokyo metro	politan			

		agement bystem	T 0.		A	· 1.:1:	4	
Classification	n of Measures		Low Ca Measur			icabili of To	-	per
Supply/	Major	Minor	-		Ι	II	III	IV
Demand	Classification	Classification						
Demand	Energy	Area Energy	Commu	nity	Н	Н	Н	Н
	Management	Management	Energy	Management				
	System	System	System((CEMS)				
	(Overview of Measur	es and Ap	oplicability				
management in a neighbou • CEMS also	systems such as ho irhood, and optimiz pprovide the sup	ent system (CEMS) ome energy managem zes the use of energy in oply side of electric	ent system n the neigh city with	s and building e bourhood. such informat	energy	manage	ement s	ystems,
and state o	of devices and fa	cilities in the neig Expected CO ₂ I						
Reduction	n of CO ₂ emissio	on in a neighborho		Liitti				
		sion from the co		ed power su	oplv t	hroug	h the	e total
		onsumption in a ne						
•		Examples of Appl						
		Schematic Diagran	ı of the Sy	vstem etc.				
EMS	Energy supply/dem within a region Monitoring & opera devices/facilities Added value servic Overall region energy Regional servic Commu Energy Manager (CEMS	tion of es management He provider nity yy ment	nergy manag ervices targe	e, office building, E\ gement eted at each individ , EV energy manag Home Home Building	ual user			

Charging

Power System

EV


(26)Community Energy Management System

Social Infrastructure Provider

	n of Measures		Low Carbon Measure			ity as	per
Supply/ Demand	Major Classification	Minor Classification	Measure	I	of Tov II	III	IV
Demand	Management	Energy Management System	Area Energy Management System(AEMS)				
	Over		and Applicability				
• The city at	ims at establishing		nobility, applying ele		hicles (EV).	
optimize t	he use of electricity	both in mobility an	nmunity energy ma d daily life at home, , sewage and solid w	buildin	gs and	other f	
]	Expected CO ₂ Re	ducing Effect				
replacingCombinat	conventional gasoli	ne engine vehicles. nent system and c	me of reduction dep conventional CEMS f CO2.	-			
		Examples of A	pplication				
		ilot system in M					
	Sch	ematic Diagram o	f the System etc.				
CEMS CEMS Water Sub-EMS/Demand Side	Heat Reside Comm Indust	Elect- icity ential rial rial Batteries	Demand forecast User Ser IT platform Demand forecast EV utilities EV utilities EV utilities EV utilities EV utilities EV utilities EV utilities EV utilities EV utilities EV utilities		↔ EV Ut se IT pla P(sy	Center ser ervices atform ower /stem	

(27)Community Energy Management System (CEMS)

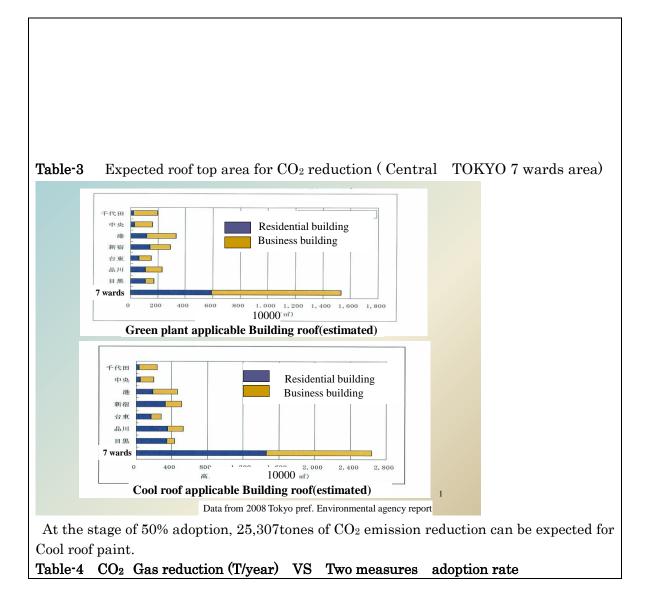
Classificatio	on of Measures		Low Carbon Measure		licab e of T	ility a 'own	s per
Supply/ Demand	Major Classification	Minor Classification		Ι	Π	III	IV
Supply/	Smart Grid System	Network	Smart energy				
Demand	(mainly for electric		system				
	power system)						
	Overview	w of Measures and	d Applicability				
0	ystem of isolated island gri run by a local electricity c ric vehicles are introduced	ompany is linked to		ga solar	at the	suppl	y side,
and elect	run by a local electricity c ric vehicles are introduced of relatively small-scale gr	ompany is linked to at the demand side id with unstable fac	ctors on the both sup	0			
and electA model	run by a local electricity c ric vehicles are introduced of relatively small-scale gr Exp	ompany is linked to at the demand side id with unstable fac ected CO ₂ Reduc	tors on the both sup ing Effect	oply and	dema	nd side	28.
and elect A model Extensi 	run by a local electricity c ric vehicles are introduced of relatively small-scale gr	ompany is linked to at the demand side id with unstable fac ected CO ₂ Reduc nergy, such as w	tors on the both sup ing Effect	oply and	dema	nd side	28.
and elect A model Extensi emission 	run by a local electricity c ric vehicles are introduced of relatively small-scale gr <u>Exp</u> ve use of renewable en	ompany is linked to at the demand side rid with unstable fac ected CO ₂ Reduc nergy, such as wa rer plants	tors on the both sup ing Effect	oply and	dema	nd side	28.
and elect A model Extensi emission 	run by a local electricity c ric vehicles are introduced of relatively small-scale gr <u>Exp</u> ve use of renewable en n by conventional pow V also reduces CO2 emissio	ompany is linked to at the demand side rid with unstable fac ected CO ₂ Reduc nergy, such as wa rer plants	ttors on the both sup ing Effect ind farm and me	oply and	dema	nd side	28.
and elect A model Extensi emission 	run by a local electricity c ric vehicles are introduced of relatively small-scale gr <u>Exp</u> ve use of renewable en n by conventional pow V also reduces CO2 emission	ompany is linked to at the demand side rid with unstable fac ected CO ₂ Reduc nergy, such as wa rer plants on for mobility	etors on the both sup ing Effect ind farm and me cation	oply and	dema	nd side	28.

(30) Simulat	ion results for (CO ₂ emission re	duction (Centra	al TOK	YO 7 wa	ards ar	ea)
Classification	n of Measures		Low Carbon	Applic	ability a	as per	
			Measure	Type of Town			
Supply/	Major	Minor		I II III IV			IV
Demand	Classification	Classification					
Demand	Building	Low Carbon	Reducing				
		Building	Heat Loads				
	Ov	erview of Measur	es and Applicabi	lity			

- Tokyo prefecture Environmental Agency made a 2-years demonstration project from 2007 to 2008 estimating the CO₂ emission reduction when the building roof top was covered by green planting or Cool roof paint.
- CO₂ emission reduction weight (kg –CO₂/year m²)for green planting or Cool roof paint were investigated for specific buildings preceded by the demonstration project.
- CO₂ emission rate (kg –CO₂/year m^2) were estimated as Table-1.

Expected CO₂ Reducing Effect

Table-1 CO₂ emission reduction (kg -CO₂/year \cdot m²)


Type of roof top	CO_2 emission reduction	CO_2 emission reduction
		(Life cycle cost added)
Green planting	5,218	4,167
Cool roof paint	1,919	1,873

Insulation thickness 25mm

Г

Table-2 CO_2 emission reduction (kg $-CO_2$ /year \cdot m²)in 2-years Demonstration project

Type of roof top	Constructed area m^2	CO ₂ emission reduction	Tone-CO ₂ / year
Green planting	6,458.8		33.7
Cool roof paint	29,176.1		56.0

Adoption rate Method	Trial period (%) 0.04 0.11	3%	10%	30%	50%	
Green planting Roof	33.7	2,395	7,983	23,948	39,913	
Coolroof paint	56.0	1,518	5,061	1,5184	25,307	
				t / y	ear (-CO ₂)	
		Data from	n 2008 Tokyo pr	ref. Environmenta	al agency report	
		Ex	amples of a	Application	l	
al TOKYO 7 w				o-ku, Mina	to-ku, Shinju	uku-ku, Tait
gawa-ku, and	Meguro			of the Syst		

Appendix 4

Low Carbon Town Indicators (Preliminary Study Results)

1. Background

Concept of the Low Carbon Town in the APEC Region (hereafter called the "Concept" has been revised since the Phase 1 in 2011, reflecting the results of feasibility studies conducted every year. To build a low carbon town based on the Concept, it is important to recognize the present condition and set a goal. For this purpose, indicators for the evaluation of town are necessary. At the EWG45 held in Thailand in 2013, it was decided that indicators were introduced as a part of the Concept and that Japan would conduct the preliminary study for it. In this appendix, the results of the preliminary study and the trial of <u>preliminary draft of indicators</u>, the specifications of the indicators are explained. Therefore, this appendix is not designed for the immediate application as a part of the Concept but offers the idea of Los Carbon Town Indicator to be established as a reference.

2. Preliminary Study Procedures

The preliminary study was conducted according to the following procedure:

- (1) Based on the idea indicated by the Concept, i.e. how a low carbon town should be, the characteristics that the indicators used for the assessment of the town should have are determined from the standpoint of 5W1H, i.e. purpose (why), user (who), phase of development (when), scope of assessment (where), assessment areas and items (what) and approach (how).
 - ① Why = purpose: a municipality evaluates the efforts for reducing carbon emissions at each phase and support the realization and continuity of a low carbon city.
 - ② Who = user: A municipality evaluates the administrative district it supervises.
 - ③ When = assessment timing: Evaluate in the current situation diagnosis phase, planning phase, designing phase, construction phase, and operation phase in city administration
 - ④ Where = scope of assessment: Evaluate from the perspective of city scale and administrative district
 - (5) What = assessment areas and items: Must be the areas and items that contribute to the reduction of carbon emissions
 - (6) How = assessment methods: Must be simple and easy-to-understand methods. Reflect the circumstances of each nation and the characteristics of the project as well as global trends.

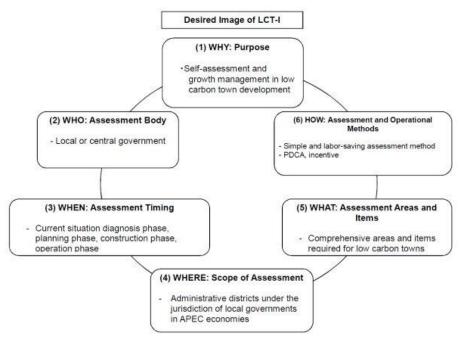


Figure: The characteristics low-carbon town assessment indicators should have by 5W1H

(2) In accordance with the above 5W1H, the applicability of 12 existing indicators to the assessment of a low carbon town was examined.

- (3) As a result, the following became apparent:
 - ① No existing indicator is perfectly consistent with the low carbon town indicator required by APEC. There is no indicator that is helpful in all aspects.
 - 2 Therefore, it is necessary to develop new low carbon town assessment indicators.
 - ③ Among the existing indicators, however, some have characteristics that may be partly helpful in each of 5W1H. It is effective to skillfully combine these characteristics and compose new indicators.
 - (4) The indicators that may be particularly helpful are listed below. These shall be used as components when developing new indicators.
 - A) CASBEE-Cities: Scope of assessment and CO₂ calculation method
 - B) J-CODE: Assessment ranking and criteria
 - C) Tianjin Yujiapu CBD: Assessment criteria and the idea of having "core" and "additional"
 - D) Global City Indicator: Use of existing statistical data

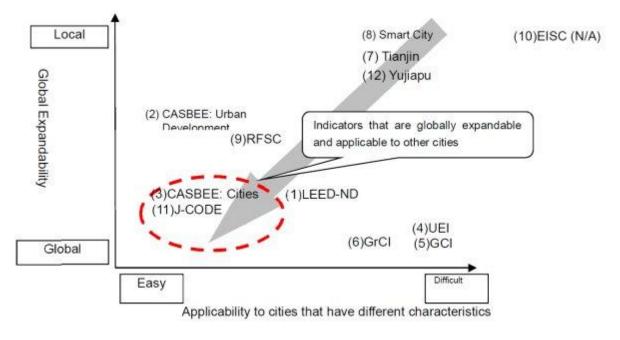


Figure: Positions of existing indicators and helpful indicators

3. Proposed Principles on APEC Low Carbon Town Indicators

Based on the conclusion derived in the previous section, it is determined to establish low carbon town assessment indicators according to the following principles.

(1) Principles

- 1 Simple and easy-to-understand indicators
 - > Must be intuitive and easy-to-understand, utilizing existing statistical data where possible.
 - Must be used both as indicators for the assessment of each individual area and as comprehensive indicators for the whole project.
- ② Indicators that reflect the circumstances of each nation and the characteristics of the project
 - Must reflect the economic circumstances of each nation and the characteristics of the project and must not obstruct sustainable development.
 - Must grasp the degree of achievement over time in each of the conception, planning, execution and maintenance phases.
- ③ Indicators based on the achievements of the existing APEC LCMT TF, existing assessment indicators and global trends
 - Must reflect global trends, such as smart community infrastructure assessment indicators (ISO TC268) and OECD activities, while using the existing indicators including CASBEE and LEED as reference.
- (2) Purpose of Use
 - > They are not a comparison of cities by a third party or ranking for budget allocation by a national government. It is used for the current situation diagnosis and progress management in the planning and operation phases by a local or national government.
 - > It evaluates not only the reduction of CO_2 emissions but also the progress of the efforts of a low carbon town, taking the quality of life and sustainability of the town as a whole into consideration.
 - ➢ If the assessment of a low carbon town is likened to a medical checkup, the processes include diagnosis of each part, optional examination, comprehensive diagnosis of the whole body, comments, and prescription by a doctor and instruction for an additional examination. All these shall be applied to a low carbon town.
 - Considering the movement to internationally standardizing the city infrastructure assessment indicators by the International Organization for Standardization (ISO), the indicator system must be ready for future standardization and be applicable to various types of low carbon cities.

- (3) Structure
 - Must be consistent with the Concept of the Low Carbon Town in the APEC Region. Towns are classified into four (types of towns); Urban (1. CBD, 2. Commercial-oriented Town, 3. Residential-oriented Town) and Rural (4. Village and Island).
 - Assessment areas must be general and can be applied all cities. The indicators must consist of core indicators applicable to all low carbon towns and additional indicators for each region that reflect the characteristics of each low carbon town.

♦ E.g. Indicator-Tianjin CBD and Indicator-Samui Island

- (4) Assessment Method
 - > The degree of achievement in each area or for each item is assessed on a three-point scale and expressed by the number of stars ($\bigstar, \bigstar \bigstar, \bigstar \bigstar$). If the result is under the lowest criterion, no star is given.
 - ➤ The core indicators are applied to all low carbon towns. Each economy shall determine whether they have additional indicators or their concrete details.
 - > Each economy can determine the assessment criteria.
 - Each item is individually assessed to work out an area assessment. All area assessments are put together to work out a comprehensive assessment for the low carbon town.
 - There are three evaluation methods: 1) L (additional) only, 2) Q (improvement of quality) + L and 3) Q/L. Aiming at wider application, Q+L is chosen for its easiness of data acquisition and calculation.
- (5) Specifications for Standardization
 - Assessment (calculation) criteria are specified for each indicator. For an economy that does not have necessary data, criterion values and estimation methods are specified as a reference.
 - Options are specified for additional indicators (or rules are specified for those who want to add them by themselves).
 - Even the same indicator may have different importance depending on which economy uses it. For this reason, each economy may use its discretion to give priority to one indicator over the other.
- (6) Method and System for Management and Operation
 - Each economy may carry out assessment on its own but the execution by a third party (consultant) is not excluded.
 - After hearing the assessment results, each economy shall review or correct the approach toward the realization of a low carbon town and use the indicators in the PDCA cycle.
 - > The degree of progress is assessed at specified intervals. (The interval of time is determined at the discretion of each economy.)

- > Progress is reported at the APEC meeting. An award program, e.g. APEC Awards, shall be established and efforts are rewarded.
- > A third party examination/certification body may be separately established.

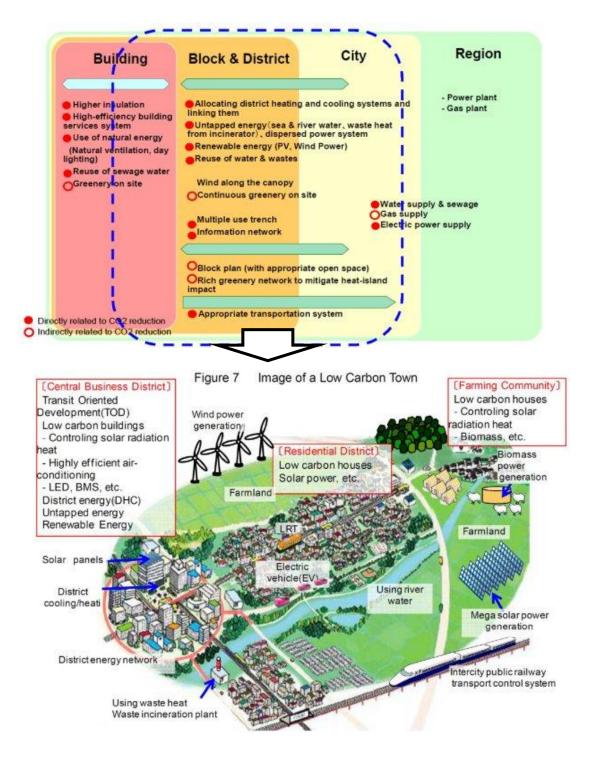
<u>Preliminary drafts</u> concerning the attributes of the assessment indicators to be established are shown below:

- 1. Scale of Space
 - ✓ Must be consistent with the APEC LCMT Concept.
 - ✓ Classified into four types; Urban (1. CBD, 2. Commercial-oriented Town, 3. Residential-oriented Town) and Rural (4. Village and Island).

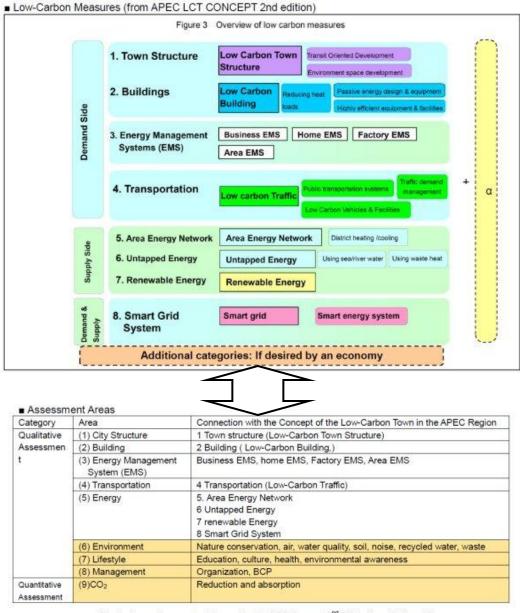
	Туре	of Town	Character	ristics of Town		Infrastructure	Laws and Regulations	
Symbol		Туре	Size	Population Density	Land Usage	Development		
I	Urban	CBD	100ha-	High	Mixed	Sufficient	Sufficient	
II		Commercial Oriented Town	-100ha	Middle to High	Mixed			
ш		Residential Oriented Town		Middle	Mainly Housing	Insufficient	Insufficient	
IV	Rural	Village Island		Low	Farming Fishing Resort		Limited	

Table 1 Characterization of Town

Type of Town	Low Carbon Town Project	Economy	Population
I Urban (Central	Yujiapu CBD, Tianjin [⊯] 1	China	500,000
Business District :CBD)	Sino-Singapore Tianjin Eco City	China	350,000
	Quezon City Green CBD	Philippine	
ll Urban(Commercial Oriented Town)	Putrajaya Green City	Malaysia	68、000 (300,000 planned)
	Chiang Mai	Thailand	160,000
	Da Nang (Pilot City of WB Eco2 Cities Project)	Viet Nam	1 million *
	Cebu City (Pilot City of WB Eco2 Cities Project)	Philippine	820,000*
	Surabaya (Pilot City of WB Eco2 Cities Project)	Indonesia	2.8 million*
	Yokohama Smart City Project	Japan	3.7 million*
III Urban(Residential Oriented Town)	Plunggol Eco Town	Singapore	
IV Rural	Muang Klang Low Carbon City	Thailand	17,000
	Jeju Island Smart Green City	Korea	6,000 households
	Low Carbon Island (Penghu Island and Others)	Chinese Taipei	88,000
	Samui Island ^{® 2}	Thailand	53,990


Table 2 Low Carbon Town in the APEC

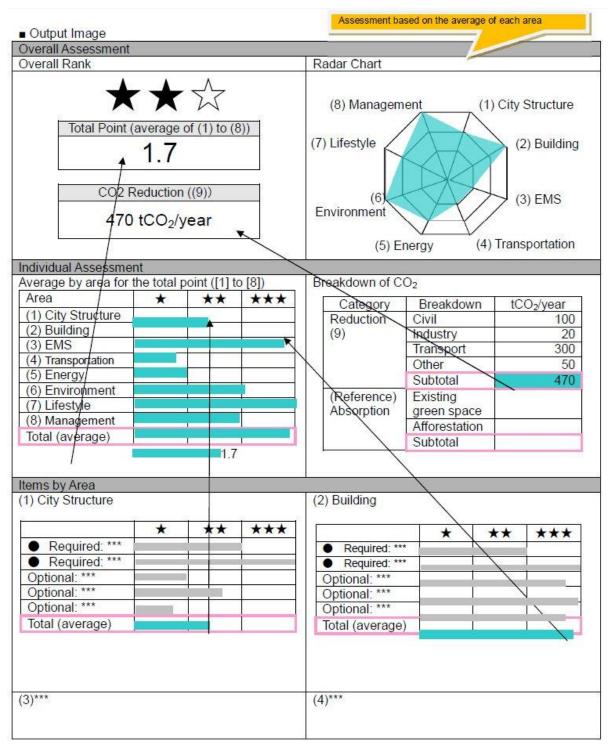
※1 LCMT Phase I feasibility study


※2 LCMT Phase II feasibility study

* Total population

- 2. Scope of Assessment
 - ✓ The assessment area and technologies are interconnected, as the measures to realize a low carbon town is different depending on the scale.
 - \checkmark In most cases, the assessment area includes the buildings, transportation systems, and the district's infrastructure within the LCMT boundary (project boundary or administrative district)

- 3. Area of assessment
 - ✓ Not only the areas that directly affect the reduction of carbon emissions but also the areas that have an indirect effect (contribution to enhanced attractiveness and sustainability of a low carbon town) are subject to the assessment.
 - \checkmark The APEC LCMT Concept specifies the low carbon measures. Evaluate the output after their application.
 - ✓ The assessment areas consist of basic nine areas; eight qualitative assessment areas and one quantitative assessment area (CO₂) and each economy shall have the flexibility to add areas where necessary.



Shaded area: Areas not addressed by the LCT Concept 2nd Edition Low Carbon Measures

- 4. Assessment Method
 - ✓ Set three-level achievement targets (one to three stars) for each item. One star means the minimum required level, two means the standard (national goal level) and three means a high level that is suitable for the name of low carbon town. If the minimum level is not attained, no star is given.
 - \checkmark Each item is assessed to work out an area assessment. Then, a comprehensive assessment is given to the LCT as a whole.
 - \checkmark The evaluation method is Q + L.
 - \checkmark Each economy can set a numerical target value for each level (one to three stars).
 - \checkmark If it cannot set a numerical target value, set a criterion value as a reference.
 - ✓ Visualize the assessment results including comprehensive assessment ranking, a radar chart per area and individual assessment. This helps readers compare the degrees of achievement of the areas in the economy and understand what issues must be solved for the realization of a LCT.

	eved he numerical v	Economy level (national goal)	e set by each eco		
Area	Core & Additional	Assessment Item	*	**	***
(1) City Structure	•	Public green area per person	12 m ² /person or more	15 m ² /person or more	18 m ² /person
	(Optional) (Optional) (Optional)	*** ***		et based on ad lapanese case).	vanced cases
The same assessment method applies to all areas.	Assessment based on ★		Average: 0.5 to 1.5 points	Average: 1.6 to 2.5 points (Required items must be ★★ or more.)	Average: 2.6 points or more (Required items must be ★★or more.)
(2) Building	(Optional) (Optional) (Optional)	Option	al items can be s (At least one item		ny.
to all areas.	Assessment b	y area (calculate based on	ditto	ditto	ditto
(3) EMS					
 (8) Management			8		8
Overall Assessment	((1) to (8))				
(9)Qualitative assessment (CO ₂)	• (Optional)	CO ₂ reduction (tCO ₂ /year) CO ₂ absorption	-	-	_

(tCO₂/year)

Sample of an output of an assessment result

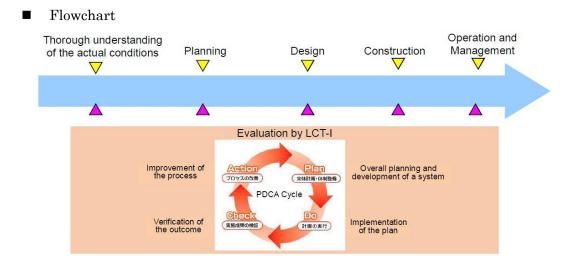
- 5. Proposed Indicators for Each Area
 - \checkmark Set mandatory items that meet the city category per area.
 - \checkmark Include both the indicators of target achievement and performance evaluation. All the

situation diagnosis, planning, designing, construction, and management phases must be covered.

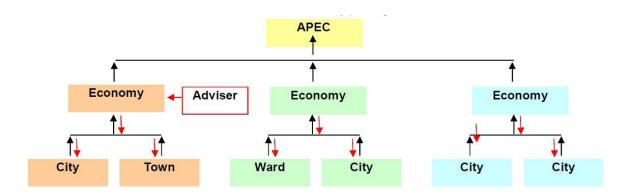
- \checkmark Assessment items from 1 to 8 must be qualitative wherever possible.
- \checkmark A local or national government sets the assessment criteria for each indicator. For an economy without criteria, standard values or assessment methods are given as a reference

 Requ 	irea items. Opt	ional items shall be s	Set by each econor Assessment	ny.	City Ca	ategory		As	sessm	ent
Area	Item	Expected Effect	Indicator (to promote low-carbonizati	(1) CBD	(2) Co-	(3) Re-	(4) Rural		Criteria	
			on)	000	Town	Town	Isurai		<u> </u>	4
(1)City Struc ture	Homes and places of work in close proximity	Less traffic jams by reducing the use of motorbikes and cars	Percentage of workers to residents in the district	•	•					
	Intensive land use	Control of suburban sprawl by leveraging volume	Total floor area per unit area in the center of a city	•	•					
	Securing of green space	Increase in absorption of CO ₂	High tree rate	•	•			Tet	hes	
		absorption of CO ₂ , decrease in heat island effect	Area of green space per capita			•	•	ferenc	econo	
	TOD	Promotion of use of public transportation	Presence/absen ce of an intensive land use plan for the area within a one-kilometer radius from a station	•	•			be section.)	These should be set by each economy For economies without criteria, standa reference section.)	
	Universal	Promotion of walking by eliminating a difference in level and promotion of comfortable movement within the region by setting up signs	Presence/absen ce of barrier-free and universal design	•	•	•			These should be set by each economy. (For economies without criteria, standard values should be provided in the	
(2) Buildin g	Energy-savi ng construction	Reduction of CO ₂ attributable to buildings	Ratio of buildings certified as green buildings to total buildings in the district (%)	•	•				es should be	
	Building Insulation	ditto	Thermal performance standard	•	•	•	•		provid	
	Energy efficiency of building equipment of	ditto	Energy reduction rate of building equipment	•	•2	•	•		ed in the	
(3) EMS	Energy managemen t in buildings	Peak shaving and supply-demand adjustment by	Presence/absen ce of a building EMS	•	•					

-


	and in the district	leveraging IT, reduction of total energy consumption	-							
		ditto	Presence/absen ce of a home EMS introduction plan			•				
		ditto	Presence/absen ce of a factory EMS introduction plan		•	•				
		ditto	Presence/absen ce of an area EMS introduction plan	•	.•	•	•			
(4) Transp ortation	Promotion of public transportatio n (improveme nt of share ratio)	Promotion of public transportation use, control of use of vehicles		•					5	
	Formation of transportatio n nodes	Control of use of vehicles by the development of walk zones	ce of more than two types of public transportation nodes	•	•		Ş.			
	Introduction of leading public transportatio n system	Development and promotion of use of public transportation network, control of vehicle use	ce of a BRT or LRT introduction plan	٠	•					
		CO ₂ reduction among public vehicles via introduction of low-carbon vehicles	ce of an EV bus and natural gas vehicle introduction plan			•	•			
	Introduction of low-carbon vehicles	CO ₂ reduction among vehicles for private and business uses	EV and PHV penetration rates	•	•	٠	•			
57 <i>692</i> 6 (5)	Transportati on demand managemen t (TDM)	Promotion of use of public transportation and control of vehicle use via IT	ce of plans for car sharing and bicycle sharing systems	•	•	•	•			
(5) Energy	Introduction of district heating and cooling (DHC)	Improvement of district-wide energy efficiency, backup function in times of disaster	utilization ratio to total energy	٠	•		2	÷		
	Introduction of renewable energy	Reduction in energy derived from fossil fuel		•	•	•	•			
	Introduction of unused energy	ditto	Utilization ratio to total energy	•	•	•	•			
	Introduction of smart grid (AEMS)	Area-wide supply-demand adjustment of energy via IT, reduction in energy consumption,	Presence/absen ce of a smart grid introduction plan	•			0			

		awareness raising via visualization							
(6) Enviro nment	Nature Conservatio n	Coexistence with nature	Presence/absen ce of an ecosystem conservation area				•		
	Air	Prevention of health hazards	Whether or not standard values have been attained	•	•	•	•		
	Water	ditto	ditto	•	•	•	•		
	Soil	ditto	ditto	•	•	•	•		
	Noise	ditto	ditto	•	•	•	•	1 × 1	2
	Water Reuse	hygienic environment	Penetration rate of water and sewage services	٠		•	•	8	
		Effective use of resources	ce of a water reuse plan		•	•	•		
	Water use reduction	Effective use of resources	consumption per capita	٠	٠	•			3
	Waste Reuse	Effective use of resources	ce of a separate collection and recycling plan	•	•	•	•		
(7) Lifestyl e	Environmen tal Education	Enhancement and promotion of environmental awareness	Presence/absen ce of educational curriculums	•	•	•			
	Environmen tal awareness raising activities	ditto	Presence/absen ce of an eco-point and green purchasing plan				•		
(8) Manag ement	Low-carbon initiatives	Promotion of low-carbon initiatives	Presence/absen ce of low-carbon-relat ed departments	٠	•	•	•		
		ditto	Presence/absen ce of a plan for low-carbon projects	•	•	•	•		
	BCP	Improvement of the added value of towns	Presence/absen ce of a project continuity plan against disasters and power outages	•	•	•	•		
(0) CO		57-55	CO reduction						
(9) CO ₂			CO ₂ reduction	•	•	•	•		


Category	Assessm										
Industry						ated w	ith pro	duction activi	ties in th		
Civil		manufacturing, agriculture/forestry/fisheries, mining, and construction industries. CO ₂ Emission= (Total floor area of buildings by use) × (CO ₂ emission)									
	CO ₂ Em	ission= (Te	otal floor	area of h	uildings	by us	e) X (CO ₂ emissio	n		
		of building									
	intensity			of an annual CC					-		
		3	Number	Primary	6				C		
	5 3 F 11		of	energy			component CO ₂ emis nergy type basic u		Converter basic uni		
	Building Use	5	materials	consumption					States and		
	12100	2 20000000	2003	MJ/m²/year	Electricity	Gas	Other	kg-CO ₂ /m ² /year	kg-CO ₂ /N		
	Office	(Office)	558	1,936	87	11	1	108.98	0.056		
	School	(Department	28	1,209	87	9	3	68.53	0.056		
	Retail	store,	20	3,225	92	7	1	182.28	0.056		
	Store	supermarket)	22767.14	1000000 N	0.000		528				
	Restaurant	(Department	28	2,923	89	10	1	164.57	0.056		
	Meeting	store)	1055			223	61				
	Place	(Office)	188	2,212	80	14	6	125.46	0.056		
	Hospital	(Hospital)	45	2,399	67	15	18	139.15	0.058		
	Hotel	(Hotel)	50	2,918	66	19	15	167.47	0.057		
	Detached Housing	(Residence)		8		ļ.		36.0			
	Housing		- 3			-			2		
	Complex	(Residence)	5. 33		5 8		33	29.5	52		
	Note: Term	s in parenthe	eses indica	ate building o	categories t	hat we	re used	in (3) (2): Rati	o of ener		
ransport	Method to use Person Trip Survey data <co<sub>2 emissions from automobiles and busses></co<sub>										
				Survey dat		e (Mat	erials)				
	<co<sub>2 em</co<sub>	issions from	n automo	Survey dat obiles and l	ta busses>			sion intensity	/		
	<co<sub>2 em</co<sub>	issions from $=$ 1	n automo	Survey dat obiles and l lume × Dis	ta busses> tance trav D2 Emission Bi	veled >	< Emis	n/car)	1		
	<co<sub>2 em CO₂ em</co<sub>	issions from	n automo Traffic vo	Survey dat obiles and l lume × Dis co Small Vehic	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle	97. 192		
	<co<sub>2 em CO₂ em</co<sub>	issions fron ission = 1 raveling speed m/h)	n automo Traffic vo	Survey dat obiles and l lume × Dis co Small Vehic nger car and sm	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b	87. 192		
	< <u>CO2</u> em CO2 em Average t (k	issions from ission = 7 raveling speed m/h) 5	n automo Traffic vo	Survey dat obiles and l lume × Dis cc Small Vehic nger car and smi 547	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110	97. 192		
	< <u>CO2</u> em CO2 em Average to (k	issions from ission = 7 raveling speed m/h) 5 10	n automo Traffic vo	Survey da obiles and lume × Dis co Small Vehic oper car and sm 547 342	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515	97. 192		
	< <u>CO2</u> em CO2 em Average to (k	issions from ission = 7 raveling speed m/h) 5 10 15	n automo Traffic vo	Survey da obiles and l lume × Dis Co Small Vehic nger car and smu 547 342 269	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277	97. 192		
	<co<sub>2 em CO₂ em Average to (k</co<sub>	issions from ission = 7 raveling speed m/h) 5 10	n automo Traffic vo	Survey da obiles and lume × Dis co Small Vehic oper car and sm 547 342	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515	97. 192		
	<co2 em<br="">CO2 em Average t (k</co2>	issions from ission = 7 raveling speed m/h) 5 10 15 20	n automo Traffic vo	Survey dat obiles and l lume × Dis co Small Vehic nger car and sm. 547 342 269 229	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133	87. 192		
	< <u>CO2</u> em CO2 em Average ti (k	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35	n automo Traffic vo	Survey dat obiles and lume × Dis cc Small Vehic nger car and sm 547 342 269 229 204 186 172	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894	97. 192		
	<co<sub>2 em CO₂ em Average to (k</co<sub>	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35 40	n automo Traffic vo	Survey dat obiles and l lume × Dis co Small Vehic oger car and sm. 547 342 269 229 204 186 172 161	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle ar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836	97. 192		
	<co<sub>2 em CO₂ em Average b (k</co<sub>	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35 40 45	n automo Traffic vo	Survey dat obiles and l lume × Dis co Small Vehic nger car and sm. 547 342 269 229 204 186 172 161 152	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788	97. 192		
	< <u>CO2</u> em CO2 em Average t (k	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35 40 45 50	n automo Traffic vo	Survey dat obiles and l lume × Dis co Small Vehic nger car and sm 547 342 269 229 204 186 172 161 152 146	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750	97. 192		
	<co2 em<br="">CO2 em Average t (k</co2>	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35 40 45 50 55	n automo Traffic vo	Survey dat obiles and lume × Dis cc Small Vehic nger car and small 269 229 204 186 172 161 152 146 141	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723	97. 192		
	< <u>CO2</u> em CO2 em Average t (k	issions from ission = 7 aveling speed m/h) 5 10 15 20 25 30 35 40 45 50 55 50 60	n automo Traffic vo	Survey da obiles and lume × Dis cc Small Vehic nger car and sm 547 342 269 229 204 186 172 161 152 146 141 138	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706			
	<co2 em<br="">CO2 em Average to (k</co2>	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35 40 45 50 55	n automo Traffic vo	Survey dat obiles and lume × Dis cc Small Vehic nger car and small 269 229 204 186 172 161 152 146 141	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723			
	<co<sub>2 em CO₂ em (k</co<sub>	issions from ission = 7 raveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65	n automo Traffic vo	Survey da obiles and l lume × Dis co Small Vehic oger car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle ar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700			
	< <u>CO2</u> em <u>CO2</u> em <u>Average t</u> (k	issions from ission = 7 aveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65 55 60 65 70 75 80	n automo Traffic vo	Survey dat obiles and lume × Dis co Small Vehic nger car and sm 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744			
	< <u>CO2</u> em CO2 em Average t (k	issions from ission = 7 aveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65 55 60 65 70 75 80 85	n automo Traffic vo	Survey dat obiles and lume × Dis cc Small Vehic nger car and small 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146	ta busses> tance trav D2 Emission Bi le	veled >	< Emis	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780	-		
	< <u>CO2</u> em <u>CO2</u> em (k	issions from ission = 7 raveling speed m/h) 5 5 10 15 20 25 30 35 30 35 40 45 50 55 60 65 55 60 65 70 75 80 85 90	n automo	Survey dat obiles and l lume × Dis Small Vehic oger car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152	ta busses> tance trav 2; Emission B de all freight car)	veled >	< Emis (g-CO ₂ /kr (regu	n/car) Large Vehicle ar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826	us)		
	<co2 em<br="">CO2 em Average to (k</co2>	issions from ission = 1 raveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 Low-Carbo	n automo Traffic vo (passer	Survey da obiles and l lume × Dis Small Vehic nger car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152 Developm	ta busses> tance trav 2; Emission B de all freight car)	/eled >	< Emis (g-CO ₂ /kr (regu	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826 etrials), Adm	inistrati		
	<co2 em<br="">CO2 em Average to (k</co2>	issions from ission = 1 aveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 Low-Carboon the "Me	n automo Traffic vo (passer	Survey data obiles and l lume × Dis Small Vehic orger car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152 Developm calculating	ta busses> tance trav 2; Emission B de all freight car)	Jance	< Emis (g-CO ₂ /kr (regu (regu	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826 erials), Adm nent indicato	us) inistrativ		
	<co2 em<br="">CO2 em Average to (k</co2>	issions from ission = 1 aveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 Low-Carboon the "Me	n automo Traffic vo (passer	Survey data obiles and l lume × Dis Small Vehic orger car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152 Developm calculating	ta busses> tance trav 2; Emission B de all freight car)	Jance	< Emis (g-CO ₂ /kr (regu (regu	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826 etrials), Adm	us) inistrativ		
	<co2 em<br="">CO2 em Average to (k</co2>	issions from ission = 1 aveling speed m/h) 5 5 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Low-Carbo on the "Me assessmo	n automo Traffic vo (passer	Survey data obiles and l lume × Dis Small Vehic oper car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152 Developm calculating cators" (N	ta busses> tance trav 2; Emission B de all freight car)	Jance	< Emis (g-CO ₂ /kr (regu (regu	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826 erials), Adm nent indicato	us) inistrativ		
	<co2 em<br="">CO2 em Average to (k</co2>	issions from ission = 1 aveling speed m/h) 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 Low-Carboon the "Me	n automo Traffic vo (passer	Survey data obiles and l lume × Dis Small Vehic oper car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152 Developm calculating cators" (N	ta busses> tance trav 2; Emission B de all freight car)	Jance	< Emis (g-CO ₂ /kr (regu (regu	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826 erials), Adm nent indicato	us) inistrativ		
	< <u>CO2</u> em <u>CO2</u> em <u>Average to</u> (k <u>Source</u> <u>Source</u> : Circular of objective Infrastruc	issions from ission = 1 aveling speed m/h) 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Low-Carbo on the "Metal assessments assessments Low-Carbo	n automo Traffic vo (passer	Survey dat obiles and l lume × Dis Small Vehic oger car and sm. 547 342 269 229 204 186 172 161 152 146 141 138 137 137 139 142 146 152 Developm calculating cators" (N Tourism	ta busses> tance trav 2; Emission B de all freight car)	Jance	< Emis (g-CO ₂ /kr (regu (regu	n/car) Large Vehicle lar freight car and b 2,110 1,515 1,277 1,133 1,042 963 894 836 788 750 723 706 700 705 719 744 780 826 erials), Adm nent indicato	inistrati		

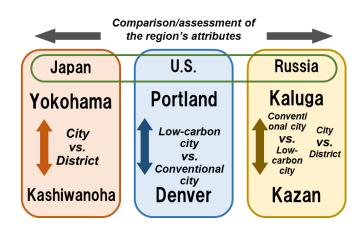
6. Example of CO₂ Assessment Calculation

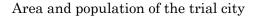
- 7. Direction to Use the LCT-I
 - \checkmark Assessment shall be carried out under the supervision of a local or national government.
 - ✓ Based on the assessment result, an improvement plan (what should be done by when and how) shall be mapped out and its implementation shall be directed.
 - \checkmark It shall be regularly monitored while in operation (yearly or once in several years).
 - ✓ LCT-I in each region shall be managed by each economy or APEC.
 - ✓ Progress shall be regularly reported at APEC meetings or other opportunities. An LCT-I certification or award shall be given to an economy that has demonstrated a positive effort.
 - ✓ It is desirable to have an incentive scheme, where priority (or preferential interest rate) is given to an award-winning local government in terms of subsidy by the World Bank.

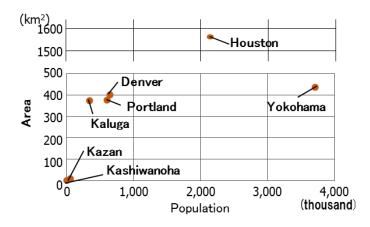
- Information Management of LCT-I
 - A local or national government shall take an initiative to set LCT-I assessment criteria and carry out an assessment in the target region.
 - A local or national government can outsource the assessment to a third party (e.g. consultant), if it cannot do it by itself.
 - > It is desirable that a local or national government makes a request to each region for correction/improvement based on the result of the LCT-I assessment.
 - > A local or national government shall accumulate and report the assessment data to APEC.
 - > It is desirable that APEC and economies share the information of best practices by publishing the results of LCT-I assessment on their websites, for example, in order to further facilitate the widespread dissemination of LCT.

4. Sensitivity Analysis and Trial Use of the Tentative Set of Indicators

Trial and sensitivity analysis of the preliminary drafts of indicators discussed in the previous chapters were conducted. Effectiveness of the drafts was examined and issues were identified.

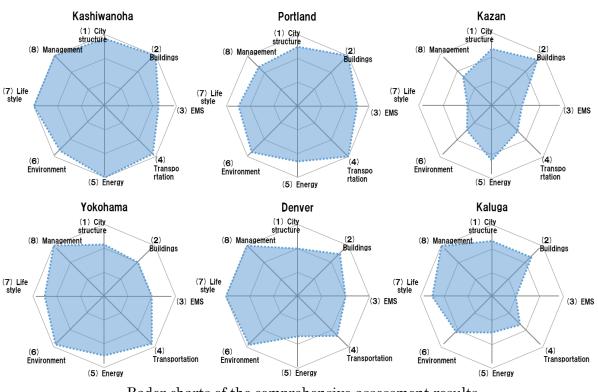

- (1) Methods of trial use and sensitivity analysis
 - A) The preliminary drafts of indicators are applied to cities with different attributes and a trial assessment is carried out to check that the difference of the city attributes is reflected in the assessment results.
 - B) In this survey, the following three were used as variable city attributes and comparative assessment was carried out.
 - ① Scale of the target area
 - ② Economy in the APEC region
 - ③ Efforts of the city/district to reduce carbon emissions


Based on the above points of view, the following six cities/districts were chosen.


	City/District	Economy	Scale	Efforts to reduce carbon emissions
1	Kashiwanoha	lanan	District	Strong
2	Yokohama	Japan	City	Strong
3	Portland	U.S.	City	Strong
4	Denver	0.3.	City	Weak
5	Kazan	Duccio	District	Strong
6	Kaluga	Russia	City	Weak

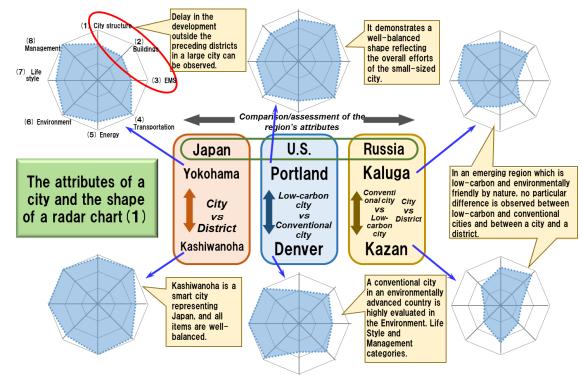
(2) Attributes of the trial cities

The contrast of the attributes of the selected trial cities is shown below.

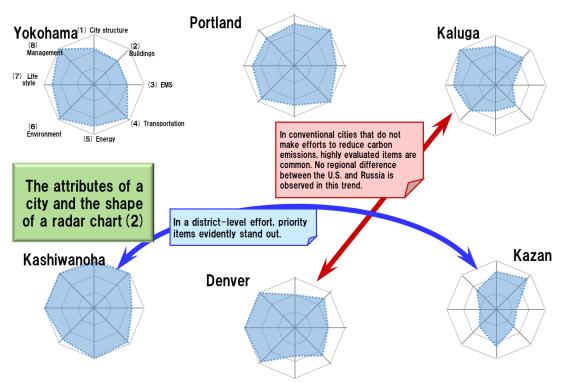

(3) Results of trials

		Kashiwanoha	Yokohama	Portland	Denver	Kazan	Kaluga
	Percentage of workers to residents in the district	***	*	**	**	***	**
	Total floor area per unit area in the center of a city	***	***	***	*	**	***
	High tree rate	**	*	***	***	***	***
1) City Structure	Area of green space per person	***	**	***	*	**	***
	Presence/absence of an intensive land use plan for the area within a one-kilometer radius from a station	***	***	**	**	**	**
	Presence/absence of barrier-free and universal design	***	***	**	***	**	*
	Ratio of buildings certified as green buildings to total buildings in the district (%)	***	**	***	***	***	**
2) Buildings	Thermal performance standard	***	**	***	**	***	***
	Energy reduction rate of building equipment	***	**	***	-	**	**
3) EMS (Energy	Presence/absence of a business EMS introduction plan	**	**	**	***	*	*
	Presence/absence of a home EMS introduction plan	**	**	**	*	*	*
Management Systems)	Presence/absence of a factory EMS introduction plan	**	**	-	***	*	*
<u> </u>	Presence/absence of an area EMS introduction plan	***	**	***	*	**	*
	Public transportation share ratio	***	***	***	*	**	**
A) T	Presence/absence of more than two types of public transportation nodes	***	***	***	***	**	**
	Presence/absence of a BRT or LRT introduction plan	***	***	***	***	**	*
4) Transportation	Presence/absence of an EV bus and natural gas vehicle introduction plan	***	***	***	**	*	**
	EV and PHV penetration rates	**	**	***	**	*	**
	Presence/absence of plans for car sharing and bicycle sharing systems	***	***	***	***	*	*
	District energy utilization ratio to total energy	***	***	**	*	***	***
5) Energy	Utilization ratio to total energy	***	**	***	***	*	*
5) LIIEIBY	Utilization ratio to total energy	***	**	-	-	***	*
	Presence/absence of a smart grid introduction plan	***	***	**	*	**	*
	Presence/absence of an ecosystem conservation area	-	***	***	***	*	***
	Air	***	***	**	***	*	**
	Water	***	***	***	***	*	**
	Soil	***	***	-	-	*	**
6) Environment	Noise	***	***	***	-	*	**
	Penetration rate of water and sewage services	***	***	***	***	***	**
	Water consumption per capita	***	**	***	**	**	***
	Presence/absence of a separate collection and recycling plan	***	***	***	***	*	*
	Presence/absence of educational curriculum	***	***	***	***	*	***
7)Lifestyle	Presence/absence of an eco-point and green purchasing plan	***	**	**	***	*	**
	Presence/absence of low-carbon-related departments	***	***	***	***	*	***
8)Management	Presence/absence of a plan for low-carbon projects	***	***	**	***	*	***
	Presence/absence of a project continuity plan against disasters and power outages	***	***	**	***	***	***

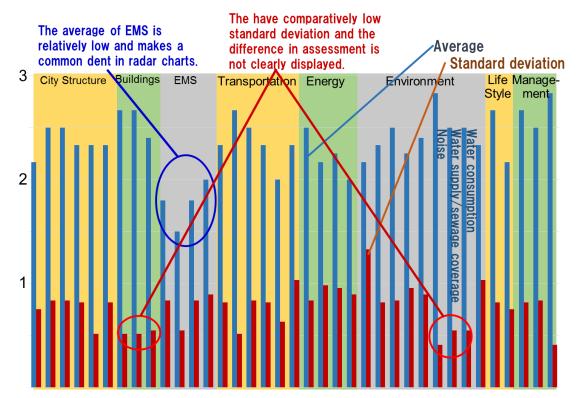
List of assessment data of trial citie


Por	tland	De	nver
Comprehensi	ve Assessment	Comprehensi	ve Assessment
Overall Point 2.7	(1) City structure (8) Management (7) Lifettyle Environment (5) Envrey	Overall Point 2.4	(1) CRy structure (8) (7) Literitie (6) Environment (5) Environment (5) Environment
Average by Area and Attribut	tes of the Target City/District	Average by Area and Attribut	tes of the Target City/District
(1) Otry Structure (2) buildings (2) buildings (3) IMS (4) Transportation (5) Intrigge (6) Intrivorment (7) Understee (8) Minagement Average	Economy U.S. Scope Whole city Attribute Sustainable city Area 376 km² Population 609,000	1) City Structure 2) Ruidings 1) HMS 4) Transportation 5) Energy 6) Energy 8) Management Aurage	Economy U.S. Scope Whole city Attribute Ordinary city Area 400 km ² Population 649,000
Individual	Assessment	Individual	Assessment
	Bog Matter Service grant and an an and an	etab.	Englished and of the state of t
Series of scheme and scheme and scheme and scheme and scheme and scheme sc	Main temperature rans with merican temperature rans with merican temperature rans merican temperature rans merican temperature merican temperature merican temperature merican temperature merican temperature merican temperature merican merican temperature merican	Response of Alexan Info	Comparison of the second
New one one one one of the set of	Vergrammer and the region of t	Total weblicitation up a part of the part interface ways and the ability and the part of the part of the part of the part total weblicitation of the part of the part of the part total weblicitation of the part of the p	Department of a matter sector se
Parastalations of variance for source of game	Parameteristica di Fundan Maria Manameteristica di Stati Studia Manameteristica di Stati Studia Maria Maria di Ale	Processing of a scalar of per- rescalations of a scalar of per- security	Reals

Visualized comparison of the comprehensive assessment results of Portland and Denver 144



Rader charts of the comprehensive assessment results


- (4) Analysis of trial results
- The attributes of a city and the shape of a radar chart (1)

■ The attributes of a city and the shape of a radar chart (2)

■ Statistical trend of each indicator item

(5) Findings

- ✓ From the above analysis, the following findings are made:
 - > Delay in the development outside the preceding districts in a large city is obvious.
 - > It demonstrates a well-balanced shape reflecting the overall efforts of the small-sized city.
 - > Kashiwanoha is a smart city representing Japan, and all items are balanced.
 - A conventional city in an environmentally advanced country is highly evaluated in the Environment, Lifestyle and Management categories.
 - > No particular difference is observed between low carbon and conventional cities and between a city and a district in an emerging region which is low carbon and environmentally friendly by nature.
 - > In a district-level effort, priority items evidently stand out.
 - In conventional cities that do not make efforts to reduce carbon emissions, highly evaluated items are common. No regional difference between the U.S. and Russia is observed in this trend.
 - > The average of EMS is relatively low and makes a common dent in radar charts.
 - > Part of Buildings and Environment has comparatively low standard deviation and the difference in assessment is not clearly displayed.
- ✓ Based on the above findings, the following conclusion is obtained from the viewpoint of the difference of the city attributes and the assessment results.
 - > Having eight assessment areas is appropriate.
 - > The number of items in each category is not enough for calculating the average.
- (6) Comments from the interviews in the course of trials
 - \checkmark It is necessary to obtain data from multiple divisions or persons in charge.
 - > In all cities, it was impossible to prepare the answer to the preliminary drafts of indicators only in one division.
 - > A division in charge needs to explain the purpose and methods to related divisions before implementation.
 - Existing data were not collected and maintained to reduce carbon emissions. To make an answer, one must start from finding a person who knows where suitable data are stored.
 - \checkmark Assessment on a three-point scale is easy to make an answer.
 - > The assessment on three-point scale adopted this time is easier to answer than the system where quantitative data must be specified.
 - $\checkmark~$ Standards of each economy should be set at APEC EWG.
 - ➤ The draft says the boundary conditions of three-point scale assessment shall be set by each economy. However, it is actually difficult for municipal authorities to set such conditions.
 - > The same can be said for a non-governmental third-party assessor.
 - ✓ It is difficult to obtain data mostly owned by private companies.

- > In many cases, private power companies own energy-related data.
- > Municipal authorities have data of public buildings only and often do not have access to the data owned by the private sector.
- Residential houses are not subject to environmental regulations in many cases.
 Data of commercial buildings and facilities are more accessible.
- > Power companies have the data of EMS but municipal authorities do not.
- ✓ Even if there is a plan to enforce a policy, it may not be published for such reasons as the need for the consent of local residents or stability of land prices.
 - Example: Assessment of the item "Introduction of an advanced public transportation system," where the criterion of judgment if whether there is a plan or not.
- (7) Suggestion obtained from the trial and sensitivity analysis for future development of indicators
 - ✓ Prioritizing the assessment items considering assessors
 - ➤ The kinds of accessible data are different depending on the types of assessment; assessment of a municipality (city or town) by a national government, self-assessment by a municipality or comparative assessment by a third party (private sector).
 - ✓ Selecting the indices that will lead to the decision on policies and measures and making a collation between them based on the assessment results
 - Making the indicator system a part of guidelines for the administrative officials in the APEC region together with the Concept.
 - It is necessary to be aware of the connection between the assessment results and the policy making/implementation of the measures.
 - > It is necessary to identify the items that indicate the measures and guidelines for the improvement of low-score areas.
 - Linking each indicator with the means/technologies to reduce carbon emissions specified in the Concept
 - ✓ Setting indicators as an activity of APEC EWG
 - The draft says the three-point scale assessment criteria (threshold) shall be set by each economy. However, this was revealed as a huge barrier in the course of a trial.
 - Municipalities that we interviewed were not aware of the threshold and the decision was made depending on the purposeful judgment of the person in charge in many cases.

Our recommendation is that the representative values of the criteria for the three-point-scale quantitative evaluation shall be determined in the APEC EWG for each economy after the indicators are finalized. This will give objectivity (logicality) to each criterion and may enhance a sense of participation of each economy at the same time.

- 5. Revised Principles and Specifications of APEC Low Carbon Town Indicators
 - Based on the conclusion in the previous chapter, we will revise the policy shown in chapter 3 and determine revised Low Carbon Town Indicators (hereafter called "LCT-I") according to the basic principles (draft) and design specifications (draft) below.
 - The basic principles (draft) and design specifications (draft) shown below are subject to change through future examination and discussion in the Study Group A.
 - (1) Basic Principles
 - ① We assume that people other than the experts of city planning and development, including the administrative officials of the national governments of the APEC economies, especially of the department of energy, or the administrative officials of municipalities, uses the indicators as an appendix to the Concept and determine the structure of indicators. (The policy of the preliminary draft remains unchanged.)
 - ⁽²⁾ The assessment results shall be shown in a form where the ratings of assessment categories and the overall assessment are shown in a visual and understandable style, typically in a radar chart. (The policy of the preliminary draft remains unchanged.)
 - 3 No economy has its own additional indicators. (The policy of the preliminary draft has been changed.)
 - ④ We make the set of indicators, as the one representing the low carbon town category, consistent with international standards, including ISO 37120 City Indicators. (The policy of the preliminary draft remains unchanged but the trend after the drafts is reflected.)
 - ⁽⁵⁾ We consider the hierarchical structure of the core indicators and the ones added to each purpose of use. (Part of the idea was shown in the preliminary drafts and is expanded.)
 - (2) Design Specifications
 - ① The indicators are used to assess low carbon towns. They shall consist of the assessment categories representing the progress of the measures taken for the reduction of carbon emissions and the data of the amount of greenhouse effect gas emissions. (The specifications of the preliminary draft remain unchanged.)
 - ② Assessment shall consist of the following eight basic categories (The specifications of the preliminary draft remain unchanged.):
 - i. City Structure
 - ii. Buildings
 - iii. Energy Management Systems
 - iv. Transportation
 - v. Energy
 - vi. Environment

- vii. Resident Awareness (The expression in the preliminary draft changed.)
- viii. Municipality Governance (The expression in the preliminary draft changed.)
- ③ The degree of achievement of each item in each category is assessed on a three-point scale and expressed by the number of stars. Assessment of each category shall be a simple average of the constituent items (not weighed). (The specifications of the preliminary draft remain unchanged.)
- (4) The assessment items constituting a category shall be as follows (The expression in the preliminary draft changed.):
 - i. To make the simple average explained in the previous paragraph effective, set five items or more.
 - ii. Set core indicators common among various purpose of use and additional indicators in accordance with the viewpoints in the next paragraph.
 - iii. Assessment criteria of each item, i.e. three-point scale thresholds, shall be categorized into two: one shall be determined based on the degree of achievement in the policy promotion phase and the other against numerical targets.
 - iv. The numerical assessment criteria of the degree of achievement vary between economies. The EWG shall set them as required to eliminate the purposeful determination by an assessor.
- (5) The targets shall be classified by the following three viewpoints (The preliminary drafts expanded.):
 - i. City/Town attributes (The specifications of the preliminary draft remain unchanged.)
 - However, the four-type system (classification into three urban and one rural by intensity and population according to the Concept) shall be reviewed.
 - \blacktriangleright Make it consistent with the city attribute classification method of ISO
 - ii. The degree of progress of the efforts of the economy to reduce carbon emissions
 - It has become clear through the trials included in this report that the items and criteria of assessment are different between the advanced nations where efforts to reduce carbon emissions are underway and developing nations who are going to tackle the issue. To fill the gap, different indicator sets need to be prepared.
 - > To continue the assessment and check the progress, it is necessary to introduce a system where the level of the economy is also adjusted with lapse of time. Study the opportunity of introducing the system, while using the best practices of other international organizations as a reference.
 - iii. Assessors
 - It has become clear through the trials included in this report that the accessible data used for the assessment are different among national governmental organization, municipalities, and third-party bodies. It is desirable that different assessors can choose different indicator set.
 - It is desirable that the selection of core and auxiliary indicators by each assessor cluster is discussed and optimized by the Study Group A.

- ⁽⁶⁾ The comprehensive assessment results shall be shown visually, using a radar chart with eight axes and the data of greenhouse effect gas emissions. (The specifications of the preliminary draft remain unchanged.)
- ⑦ The viewpoint used to determine the separation and granularity in the layer structure consisting of core and additional indicators shall be determined using ISO 37120 as a reference and considering the opportunity of the establishment of subsequent standards.
- (8) Be consistent with the ISO activities to internationally standardize the City Indicator. (The specifications of the preliminary draft remain unchanged.)
 - i. Use the ISO indicator for the area with consistent evaluation axes.
 - ii. Follow the ISO provisions for the measuring methods and the basic unit of quantitative indicators.
- (9) Others
 - Clarify the relations between the indicators and the measures specified in the Concept as much as possible.
 - Clarify the relation with the indicators to assess low carbon towns promoted by other international and domestic organizations and private companies. It is not for the reference purpose only. The structure of an inclusion relation must be made clear, if any.
 - ➤ Use ISO terminology as a reference but try to use the understandable expression for each assessor according to the categories shown in the Item 5 above.

6. Roadmap of Establishment and Dissemination of the Indicators

LCT-I shall be determi	ned according to the process below:
September 2014:	Comments on this draft by Study Group A members
EWG48 (PNG):	Approval on the next steps; Detailing of LCT-I based on this draft specifications, and the trial uses for the improvements by candidate sample economies.
December 2014 – Spring of 2015:	Tender for detailed design of LCT-I, and, Detailed design of LCT-I by professional commissioned by Study Group A, which includes interaction with ISO TC268/WG2 "City
	Indicators" Team for mutual positioning of indicators.
EWG49 (Korea):	Interim report on detailed design of LCT-I
May – September 2015:	Trials of revised LCT-I by sample economies, and approval of revised LCT-I by Study Group A
EWG50 (Mexico):	Inauguration of LCT-I, Workshop for dissemination.

7. References

- ISO37120, http://www.iso.org/iso/37120_briefing_note.pdf, http://www.iso.org/iso/catalogue_detail?csnumber=62436
- LEED-ND (Neighborhood Development),
 http://www.usgbc.org/articles/getting-know-leed-neighborhood-development
- · CASBEE, http://www.ibec.or.jp/CASBEE/english/index.htm
- Urban Environmental Indicators, http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTURBANDEVELOPMENT/EXTUWM/0,,c ontentMDK:20184476~menuPK:404564~pagePK:148956~piPK:216618~theSitePK:341511,00.html
- · Global City Indicator Facilities, http://www.cityindicators.org/
- · Green City Index, Siemens AG, http://www.siemens.com/entry/cc/en/greencityindex.htm
- · Reference Framework for Sustainable Cities, http://www.rfsc.eu/
- · European Initiative on Smart Cities,
- http://setis.ec.europa.eu/set-plan-implementation/technology-roadmaps/european-initiative-smart-citie
- · J-CODE, https://www.j-code.jp/02e.html

INDEX for Part I

Α

AEMS Area Energy Management System ······9 APERC The Asia-Pacific Energy Research Center ·····vii

В

brownfield development
BRT
Bus Rapid Transit ·····9

С

CBD	
Central Business District	·····vii, 8, 13

D

DHC
District Heating and Cooling12

Ε

EMM9
9th APEC Energy Ministers Meetingvii
EWG
Energy Working Group ······vii

F

F/S	
feasibility studies ······vi	i

G

greenfield development	

L

LCMT
Low Carbon Model Townvi
LCT
Low Carbon Town ·····vii, viii
LRT
Light Rail Transit ·····9

Q

QOL
Quality of Life ·····4

S

Study Group A	·····vii
Study Group B	······vii

Т

TFvii
Task Force ······vii
TOD
Transit Oriented Development ······15
Top-Down Approach $\cdots \cdots 10$

INDEX for Part II

Α

AEMS Area Energy Management System ······32

В

BAU
Business as Usual $\cdots 24$
BEMS
Building Energy Management Systems32
BRT
Bus Rapid Transit35

С

CBD
Central Business District
CHP
Combined Heat and Power ······39

D

DHC
District Heating and Cooling System

Ε

EV
electric vehicles ······37
EMS
Energy Management System32

F

Η

HEMS
Home Energy Management Systems 32

I

ICT Information and Communication Technology 44

L

LRT	
Light Rail Transit	

0

OA
Office Automation
OD survey
origin/destination survey ······54

Ρ

P&BR
Park and bus ride ······37
P&R
Park and Ride systems ······37
PV
photo voltaic system ······41

Т

TOD	
Transit Oriented Development	

EWG 20/2012A Prepared by Asia Pacific Energy Research Centre Inui Building, Kachidoki, 1-13-1, Kachidoki, Chuo-ku, Tokyo, 104-0054, Japan Phone: (81) 3-5144-8551 E-mail: master@aperc.ieej.or Website: http://aperc.ieej.or.jp/

Prepared for Asia Pacific Economic Cooperation Secretariat 35 Heng Mui Keng Terrace, Singapore 119616 Phone: (65) 6891-9600 E-mail: info@apec.org Website: http://www.apec.org © 2014 APEC Secretariat