

# **APERC Update**

Alexey KABALINSKIY, NGUYEN Linh Dan, Michael SINOCRUZ Asia Pacific Energy Research Centre (APERC)





### **Structure**

- ✓ Modelling improvements
- ✓ Renewables analysis improvements
- ✓ Renewables potential assessment
- √ Other updates

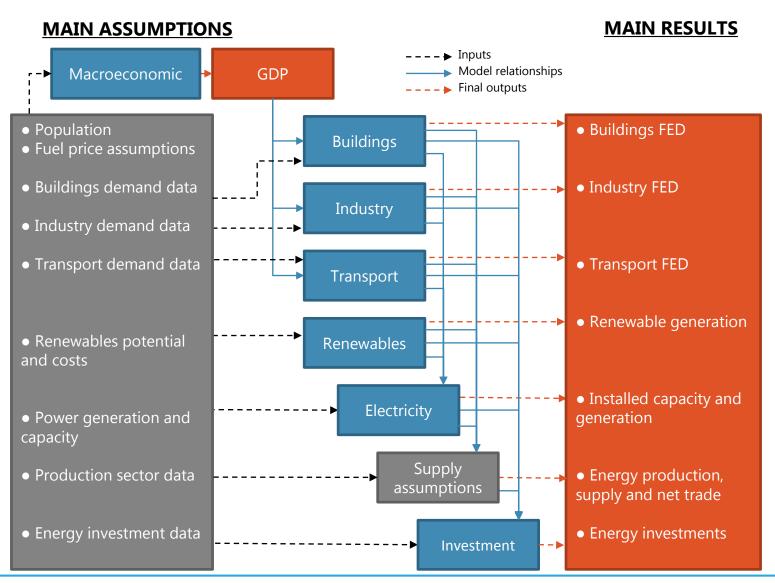




# **Modelling improvements**






## 6th and 7th Edition of the Outlook: comparison

|                | 6 <sup>th</sup> edition | 7 <sup>th</sup> edition |
|----------------|-------------------------|-------------------------|
| Economies      | 21                      | 21                      |
| Sub-regions    | 7                       | 7                       |
| Scenarios      | BAU + 3                 | BAU + 2                 |
| No. of models  | 7                       | 10                      |
| No. of fuels   | 12                      | 29                      |
| Outlook period | From 2013 to 2040       | From 2015 to 2050       |

Further updates expected, as at 2017.03.24




### 6th Edition of the Outlook: model structure





### 7<sup>th</sup> Edition of the Outlook: DRAFT model structure



Working document, no referencing or citing



### 7th Edition of the Outlook: sectoral model updates (1)

### Macroeconomic:

Use OECD GDP forecasts (where available),

### Buildings:

- Activity driven model (space/water heating, space cooling, lighting, appliances),
- > Extensive work underway to address Commercial buildings end-use data unavailability,

### Transport:

- Light Trucks and Buses added, taxis are considered
- Activity driven model,
- Modal shift,
- More detailed fuels analysis,



## 7th Edition of the Outlook: sectoral model updates (2)

### Industry:

- Bottom-up approach
- Moving away from ISIC,
- Energy-intensive sub-sectors are physical output driven, other sub-sectors value added,

#### Renewables:

- Dedicated model no more,
- Integration with Electricity and Demand sectors,



## 7th Edition of the Outlook: sectoral model updates (3)

### Supply:

Production and trade forecast

### Electricity:

- Extensive list of technologies, including Renewables,
- > Improved time-resolution

### Heat:

New model will accommodate commercial heating and cooling,

### Investment:

Demand sector investments, e.g. difference between reference and high efficiency appliances,



## 7th Edition of the Outlook: draft assumptions (1)

✓ Engaging the economy experts to review and comment our modelling assumptions

| Renewables assumptions for RESIDENTIAL & COMMERCIAL BUILDINGS & POWER in 20_USA |                                                    |                    |                        |        | BAU    |        |        |        |                 |                           |  |
|---------------------------------------------------------------------------------|----------------------------------------------------|--------------------|------------------------|--------|--------|--------|--------|--------|-----------------|---------------------------|--|
|                                                                                 |                                                    | Indicator Unit     |                        | 2015   | 2020   | 2030   | 2040   | 2050   | 2015-<br>2050,% | Comments                  |  |
| RESIDENTIAL BUILDINGS                                                           |                                                    |                    |                        |        |        |        |        |        |                 |                           |  |
| Solar Thermal                                                                   | Water heating                                      | CAPEX              | \$                     | 3,300  | 3,000  | 2,600  | 2,600  | 2,600  | -0.7%           | Avg. size: 2m², 200L      |  |
|                                                                                 |                                                    | Solar factor       | SF                     | 2.5    | 3.0    | 3.5    | 3.5    | 3.5    | n/a             |                           |  |
| Bioenergy                                                                       | 2015 Tech-Econ. potential and future market uptake |                    | TWh, %                 |        |        |        |        |        | n/a             |                           |  |
|                                                                                 | Solid biomass boiler: Space & Water heating        | CAPEX              | \$                     | 4,700  | 4,900  | 5,100  | 5,300  | 5,500  | 0.5%            | Avg. size:                |  |
|                                                                                 |                                                    | Fuel cost          | \$/t                   | 245    | 250    | 260    | 270    | 280    | 0.4%            | 36kBTU/h = 10.5kW         |  |
|                                                                                 |                                                    | Efficiency         | %                      | 78%    | 80%    | 81%    | 83%    | 84%    | n/a             |                           |  |
|                                                                                 | Biogas boiler: Space & Water heating               | CAPEX              | \$                     | 4,050  | 5,900  | 5,900  | 5,900  | 5,900  | 1.1%            | Avg. size:                |  |
|                                                                                 |                                                    | Fuel cost          | \$/1,000m <sup>3</sup> | 150    | 160    | 170    | 180    | 190    | 0.7%            | 36kBTU/h = 10.5kW         |  |
|                                                                                 |                                                    | Efficiency         | %                      | 82%    | 90%    | 90%    | 90%    | 90%    | n/a             |                           |  |
| Geothermal                                                                      | Ground source heat pump: Space heating & cooling   | CAPEX              | \$                     | 12,500 | 17,500 | 17,500 | 17,500 | 17,500 | 1.0%            | Avg. size:                |  |
|                                                                                 | & Water heating                                    | Efficiency heating | COP                    | 3.2    | 3.6    | 3.8    | 4.0    | 4.2    | n/a             | 36kBTU/h = 10.5kW, EER is |  |
|                                                                                 |                                                    | Efficiency cooling | EER                    | 14.2   | 17.1   | 21.0   | 24.0   | 26.0   | n/a             | [kBTU/h / kWh]            |  |

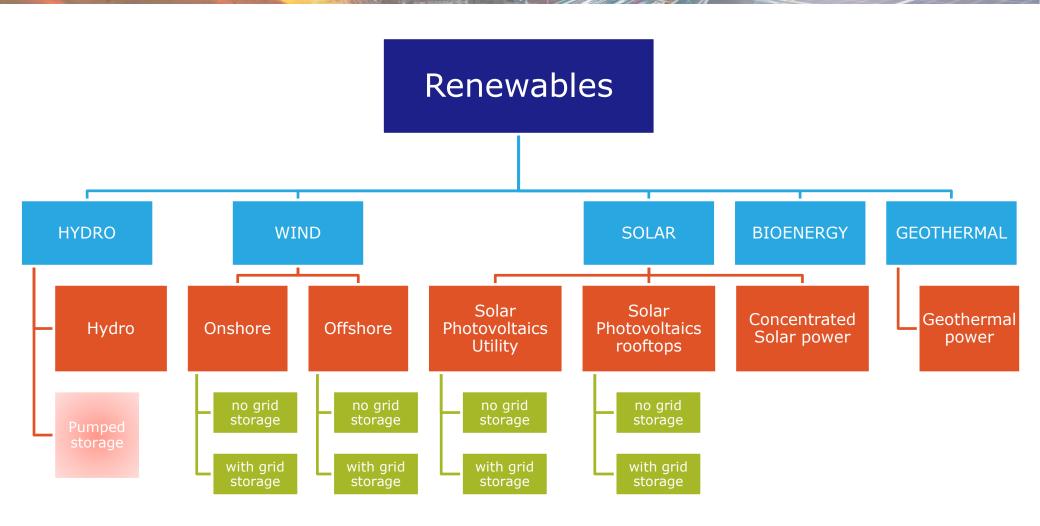


## 7<sup>th</sup> Edition of the Outlook: draft assumptions (2)

| Penewahles as               | sumptions for RESIDENTIAL & COMMERCIAL |                 |                |                | BAU            |       |         |               |                          |  |
|-----------------------------|----------------------------------------|-----------------|----------------|----------------|----------------|-------|---------|---------------|--------------------------|--|
| BUILDINGS & POWER in 20_USA |                                        | Indicator       | Unit           | 2015           | 2020           | 2030  | 2040    | 2050          | 2015-<br>2050 <b>,</b> % |  |
| POWER GENERATION            |                                        |                 |                |                | ,              |       |         | - <del></del> | ,                        |  |
| Hydro                       | Large hydro                            | CAPEX           | \$/kW          | 2,411          | 2,411          | 2,411 | 2,411   | 2,411         | 0.0%                     |  |
| Tiyuro                      | Large riyuro                           | OPEX            | \$/kW/yr.      | 2,411          | 2,411          | 2,411 | 2,411   | 2,411         | 0.0%                     |  |
|                             |                                        | Capacity factor | ∌/KVV/yi.<br>% | 42.6%          | 42.7%          | 42.7% | 42.8%   | 42.8%         |                          |  |
|                             | Medium hydro                           | CAPEX           | \$/kW          | 3,020          | 3,020          | 3,020 | 3,020   | 3,020         | 0.0%                     |  |
|                             | Mediominyaro                           | OPEX            | \$/kW/yr.      | 44             | 3,020<br>44    | 44    | 44      | 44            | 0.0%                     |  |
|                             |                                        | Capacity factor | φ/κνν/yr.<br>% | 50.0%          | 50.0%          | 50.0% | 50.0%   | 50.0%         |                          |  |
|                             | Small hydro                            | CAPEX           | \$/kW          | 3,620          | 3,620          | 3,620 | 3,620   | 3,620         | 0.0%                     |  |
|                             | Sman nyaro                             | OPEX            | \$/kW/yr.      | 73             | 73             | 73    | 73      | 73            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 88.0%          | 88.o%          | 88.0% | 88.0%   | 88.0%         | n/a                      |  |
| Wind                        | Wind onshore                           | CAPEX           | \$/kW          | 1,644          | 1,630          | 1,600 | 1,560   | 1,530         | -0.2%                    |  |
| Willia                      | Willia dishore                         | OPEX            | \$/kW/yr.      | 46             | <u> 4</u> 6    | 46    | 46      | 46            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 32.7%          | 33.2%          | 34.2% | 35.0%   | 35.0%         |                          |  |
|                             | Wind offshore                          | CAPEX           | \$/kW          | 6,331          | 6 <b>,</b> 170 | 5,870 | 5,590   | 5,310         | -0.5%                    |  |
|                             |                                        | OPEX            | \$/kW/yr.      | 76             | 76             | 76    | 76      | 76            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 37.7%          | 38.2%          | 39.2% | 40.0%   | 40.0%         | n/a                      |  |
| Solar                       | Solar PV: Residential                  | CAPEX           | \$/kW          | 3 <b>,</b> 690 | 3,460          | 3,030 | 2,660   | 2,330         | -1.3%                    |  |
|                             |                                        | OPEX            | \$/kW/yr.      | 32             | 371            | 32    | ,<br>32 | 32            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 11.2%          | 11.4%          | 12.0% | 12.5%   | 12.5%         | n/a                      |  |
|                             | Solar PV: Commercial                   | CAPEX           | \$/kW          | 3,090          | 2,890          | 2,540 | 2,230   | 1,950         | -1.3%                    |  |
|                             |                                        | OPEX            | \$/kW/yr.      | 27             | 27             | 27    | 27      | 27            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 12.2%          | 12.4%          | 13.0% | 13.5%   | 13.5%         | n/a                      |  |
|                             | Solar PV: Utility                      | CAPEX           | \$/kW          | 2,480          | 2,320          | 2,040 | 1,790   | 1,570         | -1.3%                    |  |
|                             | ,                                      | OPEX            | \$/kW/yr.      | 21             | 21             | 21    | 21      | 21            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 13.2%          | 13.4%          | 14.0% | 14.5%   | 14.5%         | n/a                      |  |
|                             | Concentrated Solar Power               | CAPEX           | \$/kW          | 4,168          | 3,940          | 3,530 | 3,160   | 2,830         | -1.1%                    |  |
|                             |                                        | OPEX            | \$/kW/yr.      | 69             | 69             | 69    | 69      | 69            | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 28.2%          | 28.4%          | 29.0% | 29.5%   | 29.5%         | n/a                      |  |
| Bioenergy                   | Solid biomass                          | CAPEX           | \$/kW          | 3,765          | 3,765          | 3,765 | 3,765   | 3,765         | 0.0%                     |  |
|                             |                                        | OPEX            | \$/kW/yr.      | 141            | 141            | 141   | 141     | 141           | 0.0%                     |  |
|                             |                                        | Capacity factor | %              | 68.2%          | 68.2%          | 68.2% | 68.2%   | 68.2%         | n/a                      |  |



## 7<sup>th</sup> Edition of the Outlook: timeline (draft)


| <b>Expert Economy Review of model results</b> | Oct 2017   |
|-----------------------------------------------|------------|
| EWG review of Vol II                          | Sept 2018  |
| EWG review of Vol I                           | Oct 2018   |
| Outlook 7th edition released                  | April 2019 |

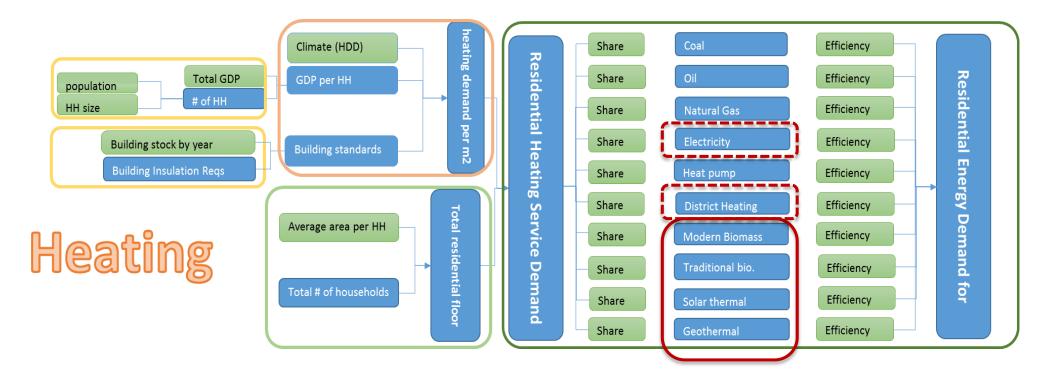






## Renewable Energy technologies in the 6th Edition






## Renewable Energy technologies

#### Renewables M Solar Geoth Geoth ar **Hydropower** Wind **Solar Power** ermal therm Bioenergy ermal in al power heat Commercial Residential heat Solar Solar PV - Utility Oumped storage Wind Onshore Offshore Solid biomass Gaseous fuels Small Hydro Large Hydro Liquid fuels Direct heat Mini Hydro source Concentrated ! Power Solar PV -Wind Solar PV Ground



## Space heating demand breakdown







# Renewables potential assessment

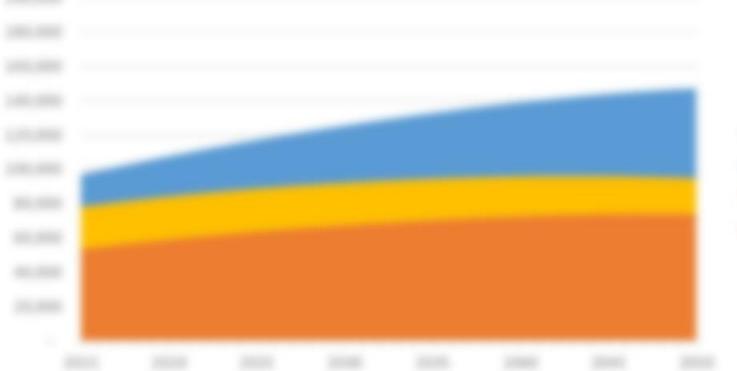




## Solar rooftop PV and heat potential assessment (draft)

### Estimates for Residential Rooftop solar PV and heat potential,

- ✓ An economy is split in urban and rural (urbanisation rate),
- ✓ Per capita floor size for urban and rural to calculate floor areas,
- ✓ Building footprints based on <u>average floor count</u>,
- ✓ Assume 1:1 ratio for footprint and roof area,
- ✓ Assume 10-25% of roof area is suitable for installations,
- ✓ Account for efficiency change from 2015 to 2050,
- ✓ Use average or regional insolation data,
- ✓ For max solar heat case:
  - ✓ Assume 3m2 solar water heater collector size, however requires 8m2 of roof,
  - ✓ Remaining area is covered with Solar PV with 80-90% density factor.




Note:

## Solar rooftop potential assessment: 21\_VN (draft)

### A trial calculation for Residential sector in Viet Nam:

- ✓ All urban areas roofs are covered by Solar Water Heaters (SWH),
- ✓ In rural areas Solar PV is 20-35%, gradually declines



Note:



## Industrial solar rooftop potential assessment (draft)

### Estimates for Industrial Rooftop solar PV and heat potential,

- ✓ Industry is split into sub-sectors,
- ✓ Individual plants with known production are assessed in sub-sectors,
  - ✓ Assessment includes Value Added/Physical Output and Buildings footprint,
- ✓ Assume 10-30% of roof area is suitable for installations,
- ✓ Calculate the Value Added/Physical Output per 1m<sup>2</sup> of roof by sector,
- ✓ Account for efficiency change from 2015 to 2050,
- ✓ Use average or regional insolation data,
- ✓ For max solar heat case:
  - ✓ Assume solar heating installations with 80% density,
  - ✓ Assume Solar PV installation with 80-90% density.

Note:



### **Biomass Supply Potential**

For 7<sup>th</sup> Outlook, estimates for biomass supply potential will be included covering agricultural and forestry residues and animal wastes. Initial estimates for municipal solid waste might also

be considered.

 Used the FAO database for agriculture production, area harvested, livestock and forestry production



Source: Pinterest



### Estimating biomass potential from agricultural residues

Projection for the total harvested area until 2050 Total Harvested Area = f (GDP, POP, Capital Stock)



Assume the productivity using its historical trend (logarithmic trend)



Production by crops = Harvested area \* Productivity



Agriculture Residual = Production \* Emission Rate (Waste)



Residual Available = Agriculture Residual \* Available Rate



Source: https://greenheatug.wordpress.com/page/2/



Source: biomassmagazine



### Estimating biomass potential from forestry residues

Projection for forest area = f(POP, Capital Stock)



Industrial wood = f(forest area, GDP Industry)
Wood fuel = f(forest area, industrial wood)
Wood chips = f(forest area, industrial wood)



Forest Residual = Wood Production \* Emission Rate (Waste)



Residual Available = Production Residual \* Available Rate



Source: woodpelltesolutions.co.uk



Source: energybook.info



## Estimating biomass potential from animal waste

Projection for Livestock Per Capita = f(historical trend logarithmic)



Number of Livestock = livestock per capita \* Population



Animal Waste = Number of Livestock \* Emission Rate (Waste)



Animal Waste Available = Animal Waste \* Available Rate



Source: woodpelltesolutions.co.u.



Source: energybook.info



### Estimating biomass potential from municipal solid waste

Projection for municipal solid waste = f(Waste per capita, POP, GDP per capita)



Available Municipal Waste = Volume of Municipal Waste \*
Recovery Rate

#### Note:

Higher recovery rate is assumed for developed economies with waste segregation policy/program.

In the case of Japan, the recovery rate is 50%.



Source: http://www.esru.strath.ac.uk/EandE/Web\_sites/03-04/biomass/background%20info4.html



Source: care2.com





# Other updates





## Other updates

### > APERC - IEEJ: Renewable Heating and Cooling Study

- Calibrating fuel-based coefficients for temperature analysis,
- > IEEJ is preparing technical potential for Solar Thermal and Ground Source Heat Pumps in Industry,
- Not-choice model, but potential-based uptake of RE for buildings,
- Preliminary results are expected before the Annual Conference,

### > APERC has joined REN21

- First data submissions and chapter review for GSR2017,
- > APERC to support Chinese Taipei with "Filling the gap" project
  - Quantitative analysis,
  - Data on costs, potentials, best practices, financing mechanisms etc.?





# Thank you!

http://aperc.ieej.or.jp/

