

Advances in transport modeling

ASIA PACIFIC ENERGY RESEARCH CENTRE Annual Conference 2020 11-16 September 2020, Online

Sonia Yeh Department of Space, Earth and Environment Chalmers University of Technology, Gothenburg, Sweden

Four key messages

Transport systems play a critical role in future energy transitions

New trends and disruptive innovation bring opportunities and challenges

Policies are the game changer

Data is the new oil

Three building blocks for modelng the future

Developing future scenarios is anticipating

Global trends

Policy & tech change

Markets and geopolotics

Global shale gas basins, top reserve holder

Three Revolutions

1. Electric vehicles, trucks, ships, airplanes

- Emissions, efficiency benefits
- Range, cost concerns

2. Mobility as a service (MaaS)

• Car/ride/bike/scooter sharing

3. Autonomous vehicles

- Safety, traffic benefits
- Unknown impact on total travel demand
- The end of private vehicles?
- More parking space?
- Shared or not shared?

Policy led transition

Consumer led transition

Industry led transition

CHALMERS

Three FOUR Revolutions

1. Electric vehicles, trucks, ships, airplanes

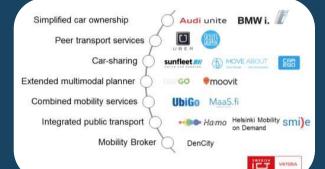
- Emissions, efficiency benefits
- Range, cost concerns

2. Mobility as a service (MaaS)

• Car/ride/bike/scooter sharing

3. Autonomous vehicles

- Safety, traffic benefits
- Unknown impact on total travel demand
- The end of private vehicles?
- More parking space?
- Shared or not shared?


4. Artificial intelligence (AI)

• Efficiency, new usages, new *technology /service*

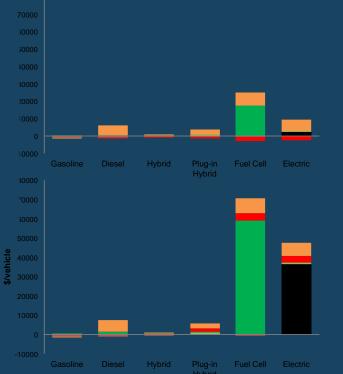
Policy led transition

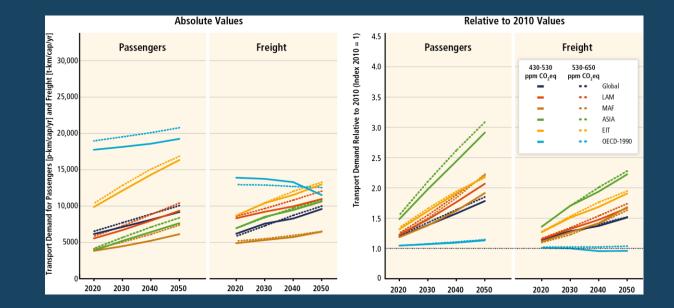
Consumer led transition

Major Uncertainty: Consumer Choices

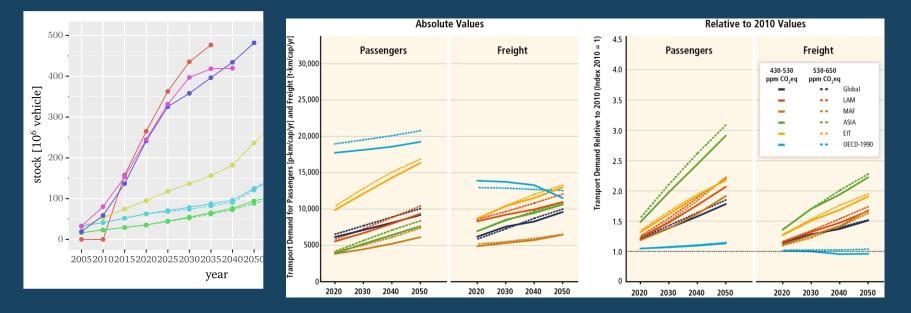
- Vehicle cost
- Fuel cost
- Refueling station
 availability
- Range Anxiety cost
- Model availability

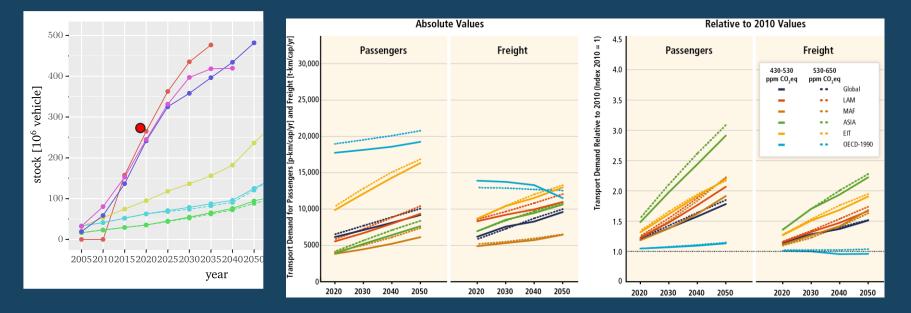
- New technology risk
 premium
- Towing capability
- Supply chain logistics
- Willingness to pay


Barriers translate to real and perceived costs for consumers

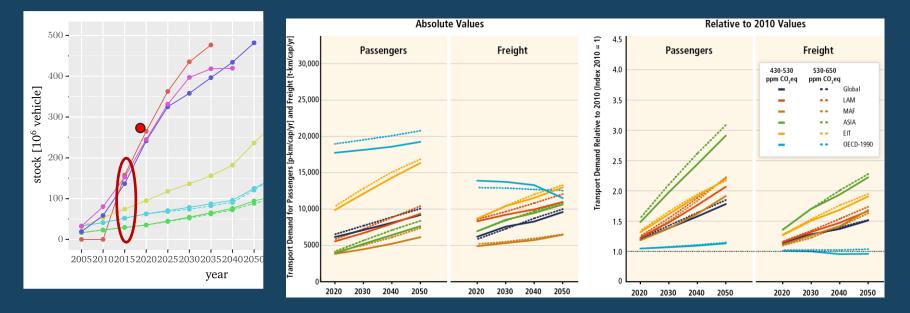


- Model Availability cost
- Risk Premium
- Refueling inconvenience Cost
- Charging Refueling Cost
- Towing Cost
- Range Anxiety Cost


8 Sonia Yeh, Transport and Energy Systems Lab (TESLab), Chalmers University of Technology


- Huge uncertainty about China: China's LDV stock
- Will there be 90 million cars or 500 million cars in China by 2050?

0



- Huge uncertainty about China: China's LDV stock
- Will there be 90 million cars or 500 million cars in China by 2050?

- Huge uncertainty about China: China's LDV stock
- Will there be 90 million cars or 500 million cars in China by 2050?

2

How much did people travel? How certain are we?

International Transport Energy Modeling (iTEM) comparison, thousand PKM/capital/yr, all modes, 2015

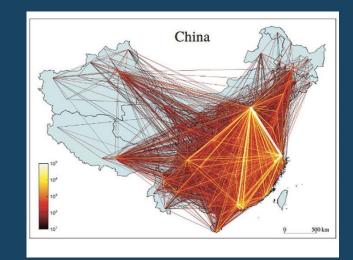
	<u>Australia</u>	<u>Brazil</u>	<u>China</u>	<u>U.S.</u>
BP	26.2	5.4	5.0	23.1
PNNL-GCAM	21.7			26.6
ITF-OECD	33.7	6.9		
IIASA-MESSAGE		5.4		
IEA-MoMo			6.3	19.7
ICCT-Roadmap		8.4	6.5	26.8

How much did people travel? How certain are we?

International Transport Energy Modeling (iTEM) comparison, thousand PKM/capital/yr, all modes, 2015

	<u>Australia</u>	<u>Brazil</u>	<u>China</u>	<u>U.S.</u>
BP	26.2	5.4	5.0	23.1
PNNL-GCAM	21.7			26.6
ITF-OECD	33.7	6.9		
IIASA-MESSAGE		5.4		
IEA-MoMo			6.3	19.7
ICCT-Roadmap		8.4	6.5	26.8

"To realistically model individual mobility in cities at both micro- and macrolevel, it is necessary to understand the essential features of a population distribution in space at different times."

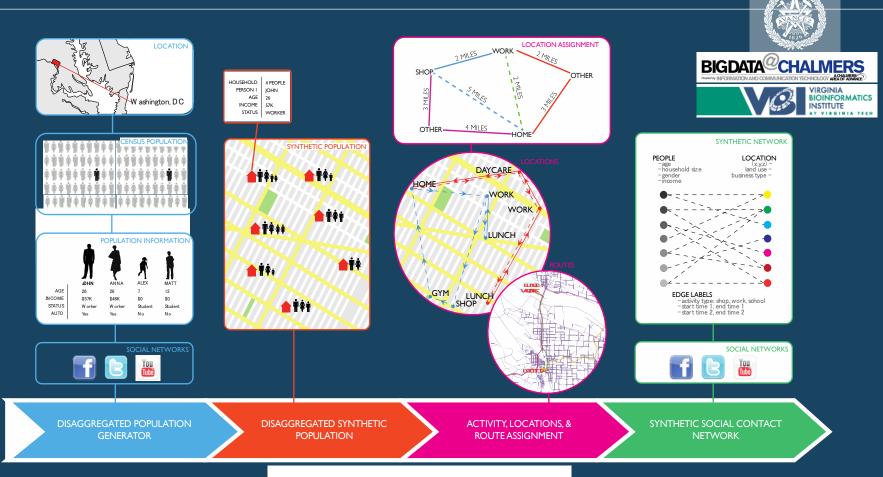

Jiang, S., et al. (2016). "The TimeGeo modeling framework for urban motility without travel surveys." <u>Proc</u> <u>Natl Acad Sci USA</u> **113**(37): E5370-5378.

What is human mobility?

The geographic displacement of human beings in space and time, seen as individuals or groups.

Individual mobility

Population mobility

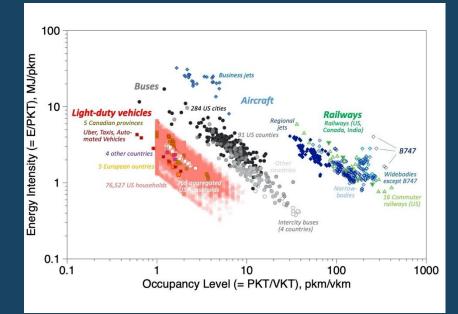


Source: Yan et al, 2017

idual #

...

16 Sonia Yeh, Transport and Energy Systems Lab (TESLab), Cha


A Holistic Perspective on Passenger Travel Energy and Greenhouse Gas-Intensities

Passenger ransport emissions are mostly explained by

- Occupancy
- Travel distance

Reduce emissions from travel:

- Sharing
- Electrification
- Reduce demand
- Emission fees

Source: Schäfer and Yeh (2020)

Advances in Transport Modeling

Understand how we move from today to the future

• Describing, predicting and simulating emerging trends and patterns of **mobility** at various scales: city, region, country and global.

Identify effective policy solutions to get us from where we are today to where we want to be in the future

 Developing quantitative tools to evaluate policy options that support energy transitions

Making projections is hard!

Prescribing solutions is even harder!!

CHALMERS UNIVERSITY OF TECHNOLOGY