Accelerating power system decarbonization in China – An analysis based on SWITCH-China Model

> Dr. Gang He Stony Brook University Gang.He@stonybrook.edu https://www.ganghe.net/

FALLING POWER GENERATION COSTS Renewable energy costs declined rapidly over the last 10 years (2010-2019)

IEA has been ALWAYS underestimated PV installation

Annual PV additions: historic data vs IEA WEO predictions In GW of added capacity per year - source International Energy Agency - World Energy Outlook

Research questions:

- How would China's power system change if the renewables and storage cost trend continue?
- What are the costs to achieve those changes?
- How those changes would affect China's regional pattern power system development?

SWITCH-China model structure

Objective function and constrains

$$= \sum_{T,i} G_{T,i} \cdot c_{T,i} + \sum_{g,i} G_{g,i} \cdot x_{T,i}$$
$$+ \sum_{T,i} O_{T,t} \cdot (m_{T,t} + f_{T,t} + c_{T,t}) \cdot hs_t$$
$$+ \sum_{a,a',i} T_{a,a',i} \cdot l_{a,a'} \cdot t_{a,a',i}$$

Constrains:

- Load meeting
- Reserve margin
- Operating reserve
- Non-fossil/RPS
- Carbon targets
- Operational

Source: He and Kammen, 2014. Where, when and how much wind is available? A provincial-scale wind resource assessment for China. Energy Policy. 74:116-122; He, Gang, and Daniel M. Kammen. 2016. "Where, When and How Much Solar Is Available? A Provincial-Scale Solar Resource Assessment for China." Renewable Energy 85: 74–82.

This Study: Scenarios

	Business as usual	Low-cost renewables	Carbon constraints	Deep carbon constraints
	(B)	(R)	(C50)	(C8o)
Base year	2015			
Existing Policies	Continuation of current policies and no new coal plants after 2020 because of tight regulations on air			
	pollution and institution of carbon mitigation measures ¹¹			
Future	Utilizing	Rapid decrease in costs for renewables and storage continues: dramatic		
Renewable Costs	conventional models	decreases in wind, solar, and storage costs as projected by Lawrence Berkeley		
Assumptions	for future renewable	National Laboratory (LBNL) and the National Renewable Energy Laboratory		
	costs	(NREL)		
Carbon	No	No	50% reduction in	80% reduction in power
constraints			power sector CO ₂	sector CO_2 from 2015 level
			from 2015 level by	by 2030
			2030	

LCOE comparison between the BAU, R and C scenarios, and LBNL studies

National Capacity mix

National Generation mix

Source: He, Gang, Jiang Lin, et al. 2020. "Rapid Cost Decrease of Renewable Energy and Storage Offers an Opportunity to Accelerate the Decarbonization of China's Power System." *Nature Communications* 11(1).

11

Regional transmission instruction needed

Carbon emissions and power costs

Conclusions & Discussions

- Global weighted-average cost of electricity of utility-scale solar PV, onshore wind, and battery storage in China plummeted by 82%, 39%, and ~88 %, respectively, between 2010 and 2019.
- If these trends continue, our results show that 62% of China's electricity could come from non-fossil sources by 2030 at a cost that is 11% lower than achieved through a business-as-usual approach...
- China's power sector could cut half of its 2015 carbon emissions at a cost about 6% lower compared to business-as-usual conditions, but 7% higher power cost than in the Low-cost Renewables Scenario.
- An 80% reduction on 2015 level by 2030 is technical feasible, with about 37% higher power cost than in the renewable scenario, and a \$21/tCO₂ cost of conserved carbon.

Contributions

- Reveals the implications of cost decrease on power systems and new perspectives on clean power transition.
- Demonstrates the impact of a fast cost decrease of renewable and storage source, a scenario that could apply to the United States.
- Reveals fast decarbonization is both technically feasible and economically beneficial, which offers the prospect of large emissions mitigation with a global environmental impact.

Uncertainties

- Can the price decrease sustain?
- Scale of the infrastructure
- Technology inertia and lock in
- Industry policy
- Power sector reform
- Storage: material, life cycle, etc
- Just transition, social economic impacts

ARTICLE https://doi.org/10.1038/s41467-020-16184-x OPEN

Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system

Gang He^{1,2⊠}, Jiang Lin^{2,3⊠}, Froylan Sifuentes^{2,4}, Xu Liu², Nikit Abhyankar² & Amol Phadke^{2⊠}

One Earth

Gold Standard for the Global Goals 1 ton of ICO₂ offset

Perspective

Check for updates

Enabling a Rapid and Just Transition away from Coal in China

Gang He,^{1,2,*} Jiang Lin,^{2,3} Ying Zhang,⁴ Wenhua Zhang,^{1,5} Guilherme Larangeira,¹ Chao Zhang,⁶ Wei Peng,⁷ Manzhi Liu,⁸ and Fuqiang Yang⁹

¹Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794, USA ²Energy Analysis and Environmental Impacts Division, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

³Department of Agricultural and Resources Economics, University of California, Berkeley, Berkeley, CA 94720, USA ⁴Institute for Urban and Environmental Studies, Chinese Academy of Social Science, Beijing 100028, China ⁵School of Economics and Management, North China Electric Power University, Beijing 102206, China ⁶School of Economics and Management, Tongji University, Shanghai 200092, China

⁷School of International Affairs and Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16801, USA

*School of Management, China University of Mining and Technology, Xuzhou 221116, China *School of Management, China Program, Beijing 100026, China *Correspondence: gang.he@stonybrook.edu https://doi.org/10.1016/j.oneear.2020.07.012

Related Publications

- He, Gang, Jiang Lin, Froylan Sifuentes, Xu Liu, Nikit Abhyankar, and Amol Phadke. 2020. Rapid Cost Decrease of Renewables and Storage Accelerates the Decarbonization of China's Power System. *Nature Communications* 11 (1): 2486. <u>https://doi.org/10.1038/s41467-020-16184-x</u>.
- He, Gang, Jiang Lin, Ying Zhang, Wenhua Zhang, Guilherme Larangeira, Chao Zhang, Wei Peng, Manzhi Liu, and Fuqiang Yang. 2020. Enabling a Rapid and Just Transition Away from Coal in China. *One Earth* 3 (2): 187–94. https://doi.org/10.1016/j.oneear.2020.07.012.
- Gang He, Anne-Perrine Avrin, James H. Nelson, Josiah Johnston, Ana Mileva, Jianwei Tian, and Daniel M. Kammen. 2016. <u>SWITCH-China: A Systems Approach to</u> <u>Decarbonizing China's Power System</u>. *Environmental Science and Technology*. 50(11):5467–5473.
- Gang He, Daniel M. Kammen. 2016. Where, when and how much solar is available? A provincial-scale solar resource assessment for China. Renewable Energy. 85:74-82.
- Gang He, Daniel M. Kammen. 2014. Where, when and how much wind is available? A provincial-scale wind resource assessment for China. Energy Policy. 74:116-122.
- Jianlin Hu, Lin Huang, Mindong Chen, Gang He, Hongliang Zhang. 2017. <u>Impacts of Power Generation on Air Quality in China Part II: Future Scenarios</u>. *Resources, Conservation and Recycling*. 121:115–127.
- Special Issue: Environmental Challenges and Potential Solutions of China's Power Sector. Resources, Conservation and Recycling, Issue 121.
- Gang He. 2019. Financing the Last Mile of Electricity-for-All Programs: Experiences from China. Economics of Energy & Environmental Policy 8 (1).
- Manzhi Liu, Meng Chen, and Gang He. 2017. The Origin and Prospect of Billion-Ton Coal Production Capacity in China. Resources, Conservation and Recycling 125: 70–85.
- More information: http://www.ganghe.net

Thank You!

Gang He Gang.He@stonybrook.edu

Department of Technology and Society Stony Brook University <u>http://www.ganghe.net</u>